Nuclear Data Sheets xx, 1 (****)

Nuclear Data Sheets for A=40

JOHN A. CAMERON AND BALRAJ SINGH

Department of Physics and Astronomy, McMaster University Hamilton, Ontario, L8S 4M1, Canada.

(Received ****)

Abstract: Nuclear spectroscopic information for the known nuclides of mass 40 (Al,Si,P,S,Cl,Ar,K,Ca,Sc,Ti) has been evaluated. The principal sources of the Adopted Levels presented are Endt's evaluations (1990En08,1978En02). The data sets for reactions and decays, including all available gamma-ray data, are based mostly on the original literature. There are no data available for the excited states in ⁴⁰Al, ⁴⁰Si, ⁴⁰P and ⁴⁰Ti. The identification and particle stability of ⁴⁰Mg are still uncertain, although search for this nuclide has been made (2002Lu09,2002No11,2003Pe31).

Cutoff Date: Literature available up to May 10, 2004 has been consulted.

General Policies and Organization of Material: See the January issue of the *Nuclear Data Sheets* or http:// www.nndc.bnl.gov /nds/NDSPolicies.pdf.

General Comments: Typ=ful; aut=john a. Cameron and balraj singh; cit=Nuclear Data.

Acknowledgements: Previous evaluations of Peter Endt and Cor van der Leun (1990En08 (including update 1998En04), 1978En02 and 1973EnVA) provided an invaluable resource for the current work. We thank Kamal K. Seth (Northwestern Univ.) for sending details of their (p,t) work (1977SeZR) on 40 Ca and Edward G. Bilpuch (Duke Univ. and TUNL) for sending a copy of 1987 thesis of his student Barry J. Warthen, giving details of (p,p₀) and (p, α_0) resonances in 40 Ca. The evaluators thank John H. Kelley (TUNL) for a review of this work and for many useful suggestions.

Citations: Nuclear Data Sheets 102, 293 (2004).

NUCLEAR DATA SHEETS

Index for A=40

Nuclide	Data Type	Page	Nuclide	Data Type	
Page					
	Skeleton Scheme for A-40	3		40 - 3	
	Comments	6		40 Ca(t, ³ He)	105
$^{40}_{12}Mg_{28}$	Adopted Levels	6		40 Ca(12C 12ND (13C 13ND)	106
40 Al	Adopted Levels	7		41K(n, 2n)(n, 2n)(n, 2n)	106
13***27	Comments	8		$K(11,211),(11,211\gamma)$ 41K(n,d)	100
$^{40}_{14}Si_{26}$	Adopted Levels, Gammas	8		41 K(d t)	107
14 20	40 Si(n n' γ), 42 P(n X γ)	9		41Ca(d ³ He)	107
$^{40}_{15}P_{25}$	Adopted Levels	9		$^{42}Ca(n, ^{3}He)$	108
40S	Adopted Levels Gammas	10		42 Ca(pol d, α).(d, α)	109
16524	$40 \text{ p} \beta^-$ decay (150 ms)	11		$(HI,xn\gamma)$	111
	$^{41}P \beta^- n decay (150 ms)$	13	$^{40}_{20}$ Ca ₂₀	Adopted Levels, Gammas	113
	${}^{9}\text{Be}({}^{48}\text{Ca}X\gamma)$	13	20 20	${}^{40}\text{K}\ \beta^-$ decay (1.248×10 ⁹ y)	141
	$^{40}S(p,p')$	13		⁴⁰ Sc ε decay (182.3 ms)	142
	Coulomb excitation	14		⁴¹ Ti ε p decay (80.4 ms)	149
$^{40}_{17}\text{Cl}_{23}$	Adopted Levels, Gammas	14		$^{44}V \epsilon \alpha$ decay (111 ms)	153
17 25	40 S β^- decay (8.8 s)	16		Inelastic scattering	154
	$^{9}\text{Be}(^{36}\text{S}.\alpha\text{py})$	18		$^{14}N(^{28}Si,d)$	156
	40 Ar(⁷ Li, ⁷ Be),(¹¹ B, ¹¹ C)	19		$^{52}S(^{12}C,\alpha)$	157
$^{40}_{18}\text{Ar}_{22}$	Adopted Levels, Gammas	20		30 Ar(α, γ):resonances	158
10 22	40 Cl β^- decay (1.35 min)	30		30 Ar($^{\circ}$ Li,d)	159
	40 K ε decay (1.248×10 ⁹ y)	36		$^{30}Ar(^{7}L_{1},t)$	161
	$^{26}Mg(^{16}O,2p\gamma),^{27}Al(^{18}O,p\alpha\gamma)$	38		$\frac{36}{38}$ Ar($\frac{16}{31}$ C)	161
	$^{36}S(\alpha,\gamma)$:resonances	39		39 K (r e)	101
	$^{37}\mathrm{Cl}(\alpha,\mathrm{p}\gamma)$	43		$\mathbf{K}(\mathbf{p}, \mathbf{\gamma})$ $^{39}\mathbf{K}(\mathbf{p}, \mathbf{p})$ ($\mathbf{p}, \mathbf{\alpha}$):resonances	102
	$\frac{38}{20}$ Ar(t,p)	47		39 K(d n)	188
	38 Ar(α , ² He)	48		39 K(³ He d) (³ He dy)	190
	40 Ar(γ,γ'),(pol γ,γ')	49		40 Ca(γ, γ')	192
	40 Ar(e,e')	51		$^{40}Ca(e,e')$	194
	$\frac{40}{4\pi} \operatorname{Ar}(n, n'\gamma)$	52		40 Ca($\pi^+,\pi^{+\prime}$),($\pi^-,\pi^{-\prime}$)	196
	40 Ar(p, p')	54		$^{40}Ca(n,n'\gamma)$	197
	40 Ar(pol d d') (d d')	57		$^{40}Ca(n,n'),(\text{pol } n,n')$	200
	40 Ar(3 He, 3 He')	57		40 Ca(p,p'),(pol p,p')	201
	40 Ar(α , α')	58		40 Ca(p,p' γ)	206
	Coulomb excitation	59		40 Ca(p,p α),(p,2p):resonances	211
	$^{40}Ca(^{14}C,^{14}O)$	60		$^{40}Ca(d,d'),(pol d,d')$	211
	41 K(d, ³ He)	60		$40_{C_{1}}(3_{11}, 3_{11})$	212
	$^{42}Ca(^{14}C,^{16}O)$	60		40 Ca($^{\circ}$ He, $^{\circ}$ He)	212
	⁴⁴ Ca(³ He, ⁷ Be)	61		$^{40}Ca(\alpha, \alpha')$	215
4017	$^{44}Ca(\alpha,2\alpha)$	61		41Ca(d t)	210
$^{40}_{19}$ K ₂₁	Adopted Levels, Gammas	62		$^{41}Ca(^{3}He\alpha)$	217
	3 Cl(α ,n γ)	73		42Ca(n,t)	210
	30 Ar(α ,d)	76		$^{42}Ca(^{16}O,^{18}O)$	220
	39 K(n, γ),(pol n, γ) E=thermal	//		$(HI,xn\gamma)$	221
	39 K(n, γ),(n,n):resonances	91	$^{40}_{21}$ Sc ₁₉	Adopted Levels	224
	39 K(d,p)	95	21 17	⁴⁰ Ti ε decay (53.3 ms)	226
	$40 \operatorname{Ar}(n n \gamma)$	93 97		$^{40}Ca(p,n),(pol p,n)$	229
	$^{40}Ar(^{3}He.t)$	102		40 Ca(³ He,t)	230
	40 K(γ,γ):Mossbauer	103		$^{40}Ca(^{12}C,^{12}B)$	231
	40 Ca(n,p γ),(n,p)	103	$^{40}_{22}\text{Ti}_{18}$	Adopted Levels	232
	40 Ca(pol d,2p),(d,2p)	104	~	40 Ca(π^+,π^-)	232
		•			

Skeleton Scheme for A=40

<u>S(p)</u> <u>232000.0</u>¹⁶

Skeleton Scheme for A=40 (continued)

 $\begin{array}{c|c} 3/2+ & 0.0 \\ \hline 80.4 \text{ ms} \\ 41 \\ 22 \\ \text{Ti}_{19} & 100\% \\ \text{Q(ep)= 11860.0 } ^{\text{SV}} \\ \hline \\ 0.0 \\ \hline 111 \\ \text{ms} \\ 423 \\ \text{V}_{21} \\ \text{W} \\ \text{Q(ex) = 8300.0 } ^{12} \end{array}$

	Ground-State and Isomeric-Level Properties							
Nuclide	Level	$J\pi$	T _{1/2}	Decay Mode				
⁴⁰ Mg	0.0	0+	> 170 ns	$\sqrt[\infty]{\beta} = ?; \sqrt[\infty]{\beta} = n = ?$				
40 Al	0.0		> 260 ns	$\%\beta =?; \%\beta = n=?$				
⁴⁰ Si	0.0	0+	33.0 ms 10	$\%\beta =?; \%\beta =n=?$				
⁴⁰ P	0.0	(2-,3-)	150 ms 8	$\%\beta = 100$; $\%\beta = n = 15.8 21$				
⁴⁰ S	0.0	0+	8.8 s 22	%β-=100				
⁴⁰ Cl	0.0	2-	1.35 min 2	%β-=100				
⁴⁰ Ar	0.0	0+	STABLE					
⁴⁰ K	0.0	4-	1.248×10 ⁹ y 3	$\%\beta$ -=89.28 13; $\%\epsilon$ + $\%\beta$ +=10.72 13				
⁴⁰ Ca	0.0	0+	STABLE					
⁴⁰ Sc	0.0	4-	182.3 ms 7	$\% \epsilon + \% \beta + = 100$; $\% \epsilon p = 0.44$ 7; $\% \epsilon \alpha = 0.017$ 5				
⁴⁰ Ti	0.0	0+	53.3 ms 15	$\% \epsilon + \% \beta + = 100$; $\% \epsilon p = 100$				
⁴¹ P	0.0		150 ms 15	%β ⁻ n=30 10; %β ⁻ n=30 10				
⁴¹ Ti	0.0	3/2+	80.4 ms 9	%εp=100 10; %εp=100 10				
44 V	0.0		111 ms 7	$\% \epsilon \alpha = ?$; $\% \epsilon \alpha = ?$				

Comments

Nuclear data sheets for ⁴⁰Mg. BALRAJ SINGH. Department of Physics and Astronomy, McMaster University, Hamilton, Ontario,

Canada, L8S 4M1.

Information about the particle stability of the ⁴⁰Mg nuclide is presented with positive identification of this nuclide in the work of 2007Ba71. The data presented in this update supersede those in the 2004Ca38 evaluation.

Literature available up to November 30, 2007 has been consulted.

ENSDF.

Research sponsored by the Natural Sciences and Engineering Research Council of Canada; the Nuclear Physics Office of the U.S. Department of Energy.

 $^{40}_{12}Mg_{28}$

 $^{40}_{12}Mg_{28}$

Adopted Levels

 $Q(\beta^{-})=20940 SY; S(n)=1400 SY; S(p)=30650 CA; Q(\alpha)=-25790 CA$ 2003Au03,1997Mo25

 $\Delta(Q(\beta^{-}))=1140, \Delta(S(n))=1040 \text{ (syst, 2003Au03).}$

 $Q(\beta^{-})$ and S(n) are from 2003Au03; S(p) and $Q(\alpha)$ are from 1997Mo25.

 $Q(\beta^{-}n)=20770 \ 1730 \ (syst, 2003Au03).$

First identification of ⁴⁰Mg nuclide as particle stable by 2007Ba71:.

2007Ba71: W(⁴⁸Ca,X γ) E=141 MeV/nucleon beam from the National Superconducting Cyclotron Laboratory (NSCL). The fragments were separated with the A1900 fragment separator. Isotopic identification by multiple ΔE signals, magnetic rigidity, total energy and time of flight analysis. Detectors: plastic scintillators, parallel-plate avalanche counters (PPACs) and silicon PIN diodes.

A total of three events were assigned to ${}^{40}Mg$. This establishes stability of ${}^{40}Mg$ against particle emission.

Earlier studies:. 2002Lu19 and 2002No11 (also 2003Pe31) searched for evidence for the formation of ⁴⁰Mg nuclide in fragmentation of ⁴⁸Ca

beam at 59, 64 MeV/nucleon bombarding a ¹⁸¹Ta target at RIKEN-RIPS facility. With a predicted cross section of 0.01 pb, only one event was expected; but none was observed. Thus the identification and particle stability of ⁴⁰Mg remained uncertain in this work.

Structure calculations: 2006Yo07 (transition strengths, QRPA); 2006Zh19 (binding energies, deformation parameters, B(E2)); 2004Ca34 (level energies, Q₂, B(E2), deformation); 2002Ro32 (levels, moments, potential energy surface); 1999Si13 (BE(2), electric quadrupole and magnetic moments); 1999La18 (B(E2), radii, deformation).

⁴⁰Mg Levels

E(level)	J^{π}	$T_{1/2}$	Comments
0	0+	>170 ns	$\%\beta$ -=?.
			$\%\beta^{-}$ n=?.
			$T_{1/2}$: limiting value estimated from time-of-flight of ≈ 170 ns (figure 3 in 2007Ba71)

 $I_{1/2}$: limiting value estimated from time-of-flight of $\approx 1/0$ ns (figure 3 in 200/Ba/1) at NSCL facility. Actual half-life is expected to be much longer as suggested by 10 ms from systematics (2003Au02) and 24 ms from calculations by 1997Mo25.

-6

Adopted Levels

 $Q(\beta^-)=23830 SY; S(n)=170 SY; S(p)=21560 SY; Q(\alpha)=-21080 SY 2003Au \Delta(Q(\beta^-))=890, \Delta(S(n))=1630, \Delta(S(p))=870, \Delta(Q(\alpha))=1180 (syst,2003Au03).$ 2003Au03

 $Q(\beta^{-n})=19300 780 \text{ (syst,2003Au03).}$ ⁴⁰Al isotope identified in ¹⁸¹Ta(⁴⁸Ca,X) reaction at E=70 MeV/nucleon (1997Sa14). A total of 34 events were observed in this study. In 1996Sa34 (from the same group as 1997Sa14) only one event was tentatively assigned to ⁴⁰Al.

⁴⁰Al Levels

E(level)	T _{1/2}	Comments
0.0	>260 ns	$\%\beta$ -=?.
		$\%\beta^-$ n=? .
		$T_{1/2}$: estimated from tof of the experimental arrangement(1997Sa14). Calculated

 $T_{1/2}(\beta^{-} \text{ decay})=3.9 \text{ ms} (1997Mo25); 10 \text{ ms} (syst, 2003Au02).$

 $^{40}_{13}\text{Al}_{27}$ -2

Comments

Nuclear data sheets for ⁴⁰Si. BALRAJ SINGH.

Department of Physics and Astronomy

McMaster University, Hamilton, ON L8S 4M1, Canada.

Nuclear Structure information for ⁴⁰Si has been evaluated, with the inclusion of excited states and gamma rays in this nuclide. This evaluation supersedes the information contained in Nuclear Data Sheets for A=40 (2004Ca38) when only the ground state was known. All literature available up to Dec 20, 2006 has been considered.

Research sponsored by NSERC of Canada and US Department of Energy. ENSDF.

 $^{40}_{14}{\rm Si}_{26}$

 ${}^{40}_{14}{\rm Si}_{26}$

Adopted Levels, Gammas

 $Q(\beta^{-})=13.57\times10^{3}$ 57; $S(n)=4.53\times10^{3}$ 65; $S(p)=2.32\times10^{5}$ 16; $Q(\alpha)=-18380$ SY 2003Au03

 $\Delta(Q(\alpha))=750$ (syst,2003Au03). $Q(\beta^{-}n)=10270\ 570\ (2003Au03).$

1989Gu03: ⁴⁰Si produced and identified in ¹⁸¹Ta(⁴⁸Ca,X) reaction at 55 MeV/nucleon.

2004Gr20 (also 2004Gr28,2003Gr22): ⁴⁰Si produced by fragmentation of ⁴⁸Ca beam at 60 MeV/nucleon with a ⁹Be target followed by separation of fragments by LISE3 spectrometer; measured β , γ , T_{1/2}.

Mass measurement: 2000Sa21 (also 2001Sa72).

2006Kh08: Si(40 Si,X) E=30-65 MeV. Measured cross section, deduced radius and isospin dependence. Measured $< r_0^2 > = 1.21$ fm^2 6.

⁴⁰Si Levels

Cross Reference (XREF) Flags

 40 Si(p,p' γ), 42 P(p,X γ) A

E(level)	J^{π}	T _{1/2}	XREF	Comments
0	0+	33.0 ms 10	A	$\sqrt[8]{\beta} \beta^{-=?}$.
				$^{\text{m}}\rho$ $^{\text{m}-2}$. T _{1/2} : from 2004Gr20 (also 2003Gr22,2004Gr28). Calculated T _{1/2} (β ⁻ decay)=36.8 ms (1997Mo25).
				$\%\beta$ n=53 12 (preliminary value from 1999YoZW).
986 5	(2+)		Α	$J\pi$: systematics of even-even nuclides.
1624 7			Α	
1831.8			Δ	

		$\underline{\gamma}$	(⁴⁰ Si)	
\mathbf{E}_{i}^{level}	\mathbf{J}_i^{π}	\mathbf{E}_{f}^{level}	$\mathbf{J}_f^{\boldsymbol{\pi}}$	Eγ
986	(2+)	0	0+	986 5
1624		986	(2+)	638 5 ^a
1831		986	(2+)	845 6 ^a

^{*a*} Weak γ seen only in the pn removal reaction from ⁴²P.

8

 $^{40}_{13}\text{Al}_{27}$ -3

 ${}^{40}_{15}P_{25}$

40 Si(p,p' γ), 42 P(p,X γ) 2006Ca26

Beams=⁴⁰Si and ⁴²P, target=liquid hydrogen (LH₂).

Beams of ⁴⁰Si and ⁴²P were obtained from fragmentation of primary beam of ⁴⁸Ca at 140 MeV/nucleon impinging upon a ⁹Be target. The fragments were separated by A1900 fragment separator $B\rho$ - ΔE - $B\rho$ method at NSCL, Michigan facility. Prompt γ rays were detected by SeGa γ -detector array of 32-fold segmented HPGe detectors. FWHM $\approx 3\%$ at 1 MeV.

					⁴⁰ Si Levels
			E((level)	J^{π}
			0		0+
			98	36 5	2+
			16 18	524 7 331 8	
					γ ⁽⁴⁰ Si)
\mathbf{E}_{i}^{level}	\mathbf{J}_i^{π}	\mathbf{E}_{f}^{level}	$\mathbf{J}_f^{\pmb{\pi}}$	E_{γ}	Comments
986	2+	0	0+	986 5	E_{γ} : most intense γ seen in both reactions.
1624		986	2+	638 5	
1831		986	2+	845 6	

^{*a*} Weak γ seen only in pn removal reaction from ⁴²P.

 ${}^{40}_{15}\mathrm{P}_{25}$

Adopted Levels

 $Q(\beta^{-})=14.76 \times 10^{3} 20$; $S(n)=3.30 \times 10^{3} 17$; $S(p)=17.32 \times 10^{3} 37$; $Q(\alpha)=-16.31 \times 10^{3} 26$ 2003Au03

 $Q(\beta^{-}n)=6980 \ 150 \ (2003Au03).$

Mass measurement: 2001Sa21 (also 2001Sa72), 1991Zh24.

2003Gr22: ⁴⁰P produced by fragmentation of ⁴⁸Ca beam at 60 MeV/ nucleon with a ⁹Be target followed by separation of fragments by LISE3 spectrometer; measured β , γ , $T_{1/2}$.

2001Wi21: ⁴⁰P was produced in the fragmentation of ⁴⁸Ca beam at E=70 MeV/nucleon with a Be target followed by analysis using using A1200 fragment separator. Others:.

1989Le16: ⁴⁰P formed and identified in ¹⁸¹Ta(⁴⁸Ca,X). Measured $T_{1/2}$ and % β^{-n} .

1979We10: ⁴⁰P produced in ⁹Be(⁴⁸Ca,X) at 212 MeV/nucleon.

1999YoZW, in a preliminary result, suggested that ⁴¹Si decays dominantly (>50%) by β^-n decay to ⁴⁰P, but final details of this study are not yet available.

⁴⁰P Levels

E(level)	J	1 _{1/2}	Comments
0	(2-,3-)	150 ms 8	%β-=100 .
			$\%\beta^{-}n=15.8\ 21\ 2001$ Wi21.
			$J\pi$: probable feeding (log <i>ft</i> =6.1) of 2+ state. Possible coupling of $\pi 1/2[211]$ and
			v5/2[312] (see discussion in 2001Wi21).
			$T_{1/2}$: weighted average of 153 ms 8 (2001Wi21) and 125 ms 25 (2003Gr22). Other:
			260 ms +100-60 (1989Le16).
			$\%\beta^{-}$ n from 2001Wi21. Other: 30 <i>10</i> (1989Le16).

Adopted Levels, Gammas

 $Q(\beta^{-})=4.69\times 10^{3}$ 14; S(n)=7.78×10³ 15; S(p)=17.28×10³ 18; Q(α)=-12.81×10³ 19 Mass measurement: 2000Sa21. 2003Au03

Mass measurement: 2000321. Other reactions: 1999Ai02: $({}^{40}S,X)$ E=38-80 MeV/nucleon. Measured mean energy-integrated cross sections, deduced strong absorption radii, r_0^2 =1.29 fm² 8. 1997Fo01: 208 Pb(37 Cl,X) E=230 MeV. Measured yield. 1991Zh24: Th(p,X) E=800 MeV. Measured fragment mass, charge ratio. Deduced mass excess. 40 S identified by 1971Ar32 in 232 Th(40 Ar,X) E=290 MeV and by 1986Du07 in 9 Be(40 Ar,X) E=60 MeV/nucleon.

⁴⁰S Levels

Cross Reference (XREF) Flags

А	40 P β^- decay (150 ms)	D	Coulomb excitation
В	9 Be(48 Ca,X γ)	Е	⁴¹ P β^- n decay (150 ms)
С	$^{40}S(p,p')$		

E(level)	J^{π}	T _{1/2}	XREF	Comments
0	0+	8.8 s 22	ABCD	$\%\beta$ -=100 .
				$T_{1/2}$: from 1986Du07.
903.69 7	2+	15.9 ps 21	ABCD	B(E2)=0.0334 36 (1996Sa21).
				$\beta_2(p,p')=0.35\ 5\ (1999Ma63),\ \beta_2(Coul.\ ex.)=0.284\ 16\ (1996Sc31).$
				$J\pi$: coulomb excited from 0+.
				$T_{1/2}$: from B(E2).
1916.84 <i>21</i>	(4+)		Α	$J\pi$: γ to 2+; probable member of 2-phonon triplet. $J\pi=0+$ is not
				excluded but similarity with ⁴² Ar states suggests 4+ is more likely.
2254.79 12	(2+)		AB	$J\pi$: γ to 2+; probable member of 2-phonon triplet.
3236.1 <i>3</i>			Α	$J\pi$: γ to (2+).
3489.46 18	(1,2+)		А	$J\pi$: γ to 0+.
3947.0 <i>3</i>			А	$J\pi$: γ to 2+.
4138.30 20	(1-,2-,3-)		Α	J π : γ to 2+; probable allowed β feeding from (2-,3-).
4724.61 23			Α	$J\pi$: γ 's to (4+) and (2+).
5009.4 4	(1-,2-,3-)		А	$J\pi$: γ to 2+; probable allowed β feeding from (2-,3-).

γ ⁽⁴⁰ S)						
\mathbf{E}_{i}^{level}	\mathbf{J}_i^{π}	\mathbf{E}_{f}^{level}	$\mathbf{J}_f^{\boldsymbol{\pi}}$	$E_{\gamma}{}^{\dagger}$	I_{γ}^{\dagger}	
903.69	2+	0	0+	903.68 9	100	
1916.84	(4+)	903.69	2+	1013.17 20	100	
2254.79	(2+)	903.69	2+	1351.10 14	100 7	
		0	0 +	2254.5 9	1.6 16	
3236.1		2254.79	(2+)	981.2 4	100	
3489.46	(1,2+)	903.69	2+	2585.6 4	12.9 24	
		0	0 +	3489.6 4	100 10	
3947.0		2254.79	(2+)	1692.6 9	25 9	
		903.69	2+	3043.2 4	100 11	
4138.30	(1-,2-,3-)	3489.46	(1,2+)	648.82 15	13.7 12	
		903.69	2+	3234.7 4	100 7	
4724.61		2254.79	(2+)	2469.79 20	100 14	
		1916.84	(4+)	2808.2 9	86 24	
5009.4	(1-,2-,3-)	3236.1		1773.2 7	8.5 24	
		903.69	2+	4105.7 4	100 14	

[†] From ⁴⁰P β^- decay.

$^{40}\mathbf{P}\,\beta^-$ decay (150 ms) 2001Wi21

Parent: ⁴⁰P: E=0.0; Jπ=(2-,3-); T_{1/2}=150 ms 8; Q=14.76×10³ 20; %β-=100
⁴⁰P was produced in the fragmentation of ⁴⁸Ca beam at E=70 MeV/nucleon with a Be target followed by analysis using using A1200 fragment separator. The decays of the implanted ions were studied by two Ge detectors and one thin plastic scintillator. Measured Eγ, Iγ, *ψ*, βγ coin, β*ψ* coin.
Others: 2003Gr22, 1989Le16: measured T_{1/2}.

⁴⁰S Levels

E(level)	$J^{\pi \dagger}$	Comments
0.0	0+	
903.69 7	2+	
1916.84 <i>21</i>	(4+)	
2254.79 12	(2+)	
3236.1 <i>3</i>		
3489.46 18	(1,2+)	
3947.0 <i>3</i>		
4138.30 20	(1-,2-,3-)‡	
4724.61 23		J π : suggested (2001Wi21) as possible member of 3-phonon triplet since the level decays to
		members of 2-phonon triplet.
5009.4 4	(1-,2-,3-)‡	

[†] From Adopted Levels.

[‡] 2001Wi21 suggest J π not 1-, since no g.s. transition observed.

The following γ' rays are assigned to ³⁹S from β -n decay of ⁴⁰P: 339.88 *11* (4.6 5), 398.61 *14* (6.1 9), 465.45 *19* (4.5 9).

Eγ	\mathbf{E}_{i}^{level}	\mathbf{J}_i^{π}	\mathbf{E}_{f}^{level}	$\mathbf{J}_f^{\boldsymbol{\pi}}$	I_{γ}^{\dagger}
648.82 15	4138.30	(1-,2-,3-)	3489.46	(1,2+)	5.7 5
834.90 8	Unplaced				5.7 17
903.68 9	903.69	2+	0.0	0 +	100 2
981.2 4	3236.1		2254.79	(2+)	2.5 4
1013.17 20	1916.84	(4+)	903.69	2+	5.2 12
1351.10 14	2254.79	(2+)	903.69	2+	12.5 9
1692.6 9	3947.0		2254.79	(2+)	1.1 4
1773.2 7	5009.4	(1-,2-,3-)	3236.1		1.4 4
2254.5 9	2254.79	(2+)	0.0	0+	0.2 3
2469.79 20	4724.61		2254.79	(2+)	6.4 9
2550.4 5	Unplaced				1.7 4
2585.6 4	3489.46	(1,2+)	903.69	2+	3.2 6
2614.8 <i>3</i>	Unplaced				2.6 9
2808.2 9	4724.61		1916.84	(4+)	5.5 15
3043.2 4	3947.0		903.69	2+	4.4 5
3234.7 4	4138.30	(1-,2-,3-)	903.69	2+	41.5 29
3489.6 4	3489.46	(1,2+)	0.0	0+	24.9 24
4105.7 4	5009.4	(1-,2-,3-)	903.69	2+	16.5 23

[†] For absolute intensity per 100 decays, multiply by 0.63 3

3-	radiations
3	radiations

$E\beta^-$	E(level)	$I\beta^{-\dagger}$	$\log ft^{\ddagger}$	Comments
(9750.6)	5009.4	11.3 <i>16</i>	5.3	av E β =4589 89.
(10035.4)	4724.61	7.5 <i>12</i>	5.6	av E β =4730 89.

β^- radiations	(continued)
----------------------	-------------

$E\beta^{-}$	E(level)	I $eta^{-\dagger}$	Log ft [‡]	Comments
(10621.7)	4138.30	29.8 26	5.1	av E β =5019 89.
(10813.0)	3947.0	3.4 5	6.1	av E β =5113 89.
(11270.5)	3489.46	14.1 18	5.5	av $E\beta = 5338 89$.
(11523.9)	3236.1	0.7 <i>3</i>	6.9	av $E\beta = 5463 89.$
(12505.21)	2254.79	1.6 9	6.7	av E β =5946 89.
(13856.31)	903.69	9.6 27	6.1	av E β =6611 89.

[†] 6% 5 feeding remains unaccounted for. $J({}^{40}P \text{ g.s.})=2,3$ does not allow significant feeding to ${}^{40}S \text{ g.s.}$ This feeding may go to higher unobserved levels, although, no escape peaks are observed by 2001Wi21 for γ rays above 4.2 MeV. All β^- feedings should be considered as upper limits due to a large energy window available between the reported level at 5009 and Q value of 14510.

[‡] These values should be considered as lower limits since some some of the decay strength may be shifted to higher (unobserved) states.

Decay Scheme

Intensities: $I_{(\gamma+ce)}$ per 100 parent decays

 ${}^{40}_{16}S_{24}-4$

⁴¹**P** β ⁻**n** decay (150 ms) 1989Le16,1998WiZV

Parent: ⁴¹P: E=0; $T_{1/2}$ =150 ms 15; Q=9.52×10³ 26; % β -n=30 10 $\%\beta^{-}n=30\ 10\ (1999 YoZW).$ No details are available about the level scheme.

⁹Be(⁴⁸Ca,X γ) 2002So14

2002So14 (also 2002Az02,2002Az01,2002Gu08,2000So17,2000Az03): ⁹Be(⁴⁸Ca,X) E=2880 MeV. Measured Eγ, Iγ, γ(θ) using Clover Ge and BaF₂ detectors. FWHM≈35 keV at 1550 keV γ-ray energy.
 A level at 3265 decaying by 2360γ (Iγ=20) was listed in conference papers (2002Az01,2002Gu08), but it is not included in

2002So14.

		⁴⁰ S Levels
E(level)	J^{π}	Comments
0 909 <i>5</i> 2265 <i>11</i>	0+ 2+ (4+)	J π : $\gamma(\theta)$ allows 2+ and 4+; but fragmentation reaction used by 2002So14 favors yrast states.
		40 a

$\underline{\gamma(3S)}$								
\mathbf{E}_{i}^{level}	\mathbf{J}_i^{π}	\mathbf{E}_{f}^{level}	\mathbf{J}_f^{π}	Eγ	I_{γ}	Mult. [†]	Comments	
909	2+	0	0+	909 5	100	Q		
2265	(4+)	909	2+	1356 6	40	(Q)	Mult.: $\gamma(\theta)$ allows $\Delta J=2$, Q or $\Delta J=0$, D+O	

[†] From $\gamma \gamma(\theta)$.

⁴⁰S(p,p') 1999Ma63

Beam=⁴⁰S from fragmentation of ⁴⁸Ca beam with a Be target. Target=CH₂.

1999Ma63 (also 1999Su05,2000Bl25): E(⁴⁰S)=30 MeV/nucleon. Measured scattered ⁴⁰S (from protons in CH₂ target) using ΔE -E phoswich detectors and time-of-flight method. Measured $\sigma(\theta)$ for elastic and inelastic scattering (from first 2+ state) compared with DWBA calculations.

40S Levels

E(level)	J^{π}	Comments
0	0+	
860 90	2+	$\beta_2 = 0.35 5.$

 ${}^{40}_{16}S_{24}-5$

 $^{40}_{17}\text{Cl}_{23}$

 ${}^{40}_{16}S_{24}-5$

 $^{40}_{17}\text{Cl}_{23}$

Coulomb excitation 1996Sc31

1996Sc31: 197 Au(40 S, 40 S' γ) E=1.6 GeV. Measured E γ .

			⁴⁰ S Levels				
E(level)	J^{π}	T _{1/2}	Comments				
0 891 <i>13</i>	0+ 2+	15.9 ps 21	B(E2)=0.0334 <i>36</i> . β_2 =0.284 <i>16</i> . T _{1/2} : from B(E2).				
			$\frac{\mathbf{E}_{i}^{level}}{891} \frac{\mathbf{J}_{i}^{\pi}}{2+} \frac{\mathbf{E}_{f}^{level}}{0} \frac{\mathbf{J}_{f}^{\pi}}{0+} \frac{\mathbf{E}_{\gamma}}{891 \ 13}$				

Adopted Levels, Gammas

- Q(β⁻)=7480 30; S(n)=5830 30; S(p)=11680 60; Q(α)=-9730 30 2003Au03 ⁴⁰Cl produced in ⁴⁰Ar(n,p): 1956Mo39, 1965Gr03, 1970Ke12. Others: Thesis (Masters) by E.L. Robinson (Purdue University,1958), 1968Hu07, 1968Hu15, 1970Lu10, 1972Kl06, 1973Kl02.
- A 0.10 s 3 activity in ⁴⁰Cl reported by 1968F110 (also 1968F111) is not convincing and has not been confirmed in any other study.
- 1999Ai02: Si(40 Cl,X) E=38-80 MeV. Measured mean-energy integrated cross section, deduced strong absorption radii, r_0^2 =1.28 fm² 7, 1.21 fm² 8. 1989Mi03: mass excess determination from βγ data. 1988Ma53: ⁴⁰Ar(n,p): analyzed one-nucleon transfer σ data, deduced g.s. occupation numbers for ⁴⁰Ar. 1997Fo01: ²⁰⁸Pb(³⁷Cl,X) E=230 MeV: measured yield. 1971Ar32: ²³²Th(⁴⁰Ar,X): yield for ⁴⁰Cl production.

40Cl Levels

Cross Reference (XREF) Flags

- А
- В
- ⁴⁰S β⁻ decay (8.8 s) ⁹Be(³⁶S,αpγ) ⁴⁰Ar(⁷Li,⁷Be),(¹¹B,¹¹C) С

Nuclear Level Sequence

Yrast negative-parity structure. A multiplet (2- to 5-) is expected from weak coupling of 3/2+ g.s. of ³⁷Cl and 7/2-А g.s. of 43 Ca.

Seq.	E(level) [†]	$J^{\pi \#}$	$T_{1/2}^{\ddagger}$	XREF	Comments
A	0	2-	1.35 min 2	ABC	$%\beta$ -=100. Jπ: log ft=5.0 to 1-; log ft=5.9 to 3 T _{1/2} : weighted average of 1.32 min 2 (1972K106), 1.44 min 8 (1970Ke12), 1.38 min 2 (thesis (masters) by E.L. Robinson, Purdue University,1958). Other: 1.4 min (1956Mo39).
А	211.62 <i>13</i> 244.03 <i>8</i> 367.1 <i>4</i>	(1-) (3-) (2)	<10 ns	ABc Bc B	
	431.8 <i>3</i>	(0- to 3+)		AB	$J\pi$: γ to 2-; γ from 1+.

Seq.	E(level) [†]	$J^{\pi \#}$	$T_{1/2}^{\ddagger}$	XREF	Comments
A	601.28 14	(4-)	<7 ns	Bc	
	680.95 17	(4-)		Bc	
А	839.16 15	(5-)		BC	
	889.5 4	1 +		A	$J\pi$: log ft=4.7 from 0+.
	1160 40			С	
	1293.3 5	(0-,1,2)		A	$J\pi$: γ 's to 2-, 1+ and (1-).
	1580 40			С	
	1740 40			С	
А	2014.7 4	(6-)	\leq 3.5 ps	BC	
	2194.2 <i>3</i>	(5)		В	
	2307.2 7	1 +		A C	$J\pi: \log ft = 3.7$ from 0+.
	2413.7 4	(6)		В	
А	2620.4 5	(7-)	\leq 3.5 ps	В	
А	4087.1 8	(8-)	-	В	

⁴⁰Cl Levels (continued)

[†] From least-squares fit to $E\gamma's$. [‡] From (³⁶S, $\alpha p\gamma$) for excited states. [#] When no J π arguments are given, the assignments are based on $\gamma(\theta)$ data in (³⁶S, $\alpha p\gamma$) and comparison of experimental level structure with shell-model calculations (particularly of 1989Wa09 and 1989Ji01).

	γ ⁽⁴⁰ Cl)									
\mathbf{E}_{i}^{level}	\mathbf{J}_i^{π}	\mathbf{E}_{f}^{level}	${ m J}_f^{m \pi}$	E_{γ}	I_{γ}	Comments				
211.62	(1-)	0	2-	211.62 13	100	E_{γ} : weighted average from β^- decay and (³⁶ S,αpγ).				
244.03	(3-)	0	2-	244.04 8	100					
367.1	(2)	211.62	(1-)	155.5 <i>3</i>	100					
431.8	(0- to 3+)	0	2-	431.8 <i>3</i>	100	E_{γ} : from β^- decay.				
601.28	(4-)	244.03	(3-)	357.36 14	100 5					
		0	2-	601.1 <i>3</i>	8.6 12					
680.95	(4-)	244.03	(3-)	436.86 17	100					
839.16	(5-)	680.95	(4-)	157.8 <i>3</i>	9.7 6					
		601.28	(4-)	237.93 9	100 3					
		244.03	(3-)	594.9 <i>4</i>	7.4 16					
889.5	1 +	431.8	(0- to 3+)	457.8 9	16 <i>3</i>					
		211.62	(1-)	677.9 7	100 5					
		0	2-	889.2 8	66 4					
1293.3	(0-,1,2)	889.5	1 +	403.8 6	43 5					
		211.62	(1-)	1081.6 8	100 7					
		0	2-	1293.1 <i>10</i>	75 6					
2014.7	(6-)	839.16	(5-)	1175.4 <i>3</i>	100					
2194.2	(5)	680.95	(4-)	1513.6 4	100 33					
		601.28	(4-)	1592.5 4	42 8					
2307.2	1 +	1293.3	(0-,1,2)	1013.7 7	100 8					
		431.8	(0- to 3+)	1875.6 9	43 <i>3</i>					
2413.7	(6)	2194.2	(5)	219.52 <i>13</i>	100					
2620.4	(7-)	2014.7	(6-)	605.4 6	100 30					
		839.16	(5-)	1781.4 5	42 15					
4087.1	(8-)	2620.4	(7-)	1466.7 6	100					

40 S β^- decay (8.8 s) 1998WiZX,1998WiZV

Parent: ⁴⁰S: E=0; J π =0+; T_{1/2}=8.8 s 22; Q=4.69×10³ 14; % β -=100 1998WiZX,1998WiZV: measured E γ , I γ , γ . 1986Du07: measured E γ , I γ , T_{1/2}. Reported four γ rays at 211.6, 431.9, 677.5 and 888.6.

	⁴⁰ Cl	Levels
E(level) [†]	Jπ‡	T _{1/2}
0	2-	1.35 min 2
211.8 5	(1-)	
431.7 5	(0- to 3+)	
889.5 5	1+	
1293.4 5	(0-,1,2)	
2307.2 7	1+	

 † From least-squares fit to E $\gamma's.$ ‡ From Adopted Levels.

				<u> </u>	∕(⁴⁰ Cl)	
Eγ	\mathbf{E}_{i}^{level}	\mathbf{J}_i^{π}	\mathbf{E}_{f}^{level}	$\mathbf{J}_f^{m{\pi}}$	$\mathrm{I}_{\gamma}^{\dagger}$	Comments
211.9 5	211.8	(1-)	0	2-	100 3	
403.8 6	1293.4	(0-,1,2)	889.5	1+	13.2 14	
431.8 5	431.7	(0- to 3+)	0	2-	44.2 20	Proposed (in 1990En08) from a 643 level, unplaced in 1986Du07.
457.8 9	889.5	1 +	431.7	(0- to 3+)	8.3 15	I man in the second sec
677.9 7	889.5	1 +	211.8	(1-)	52.7 25	
889.2 8	889.5	1 +	0	2-	34.7 22	
1013.7 7	2307.2	1+	1293.4	(0-,1,2)	65 5	
1081.6 8	1293.4	(0-,1,2)	211.8	(1-)	30.8 21	
1293.1 10	1293.4	(0-,1,2)	0	2-	23.2 19	
1875.6 9	2307.2	1+	431.7	(0- to 3+)	27.7 18	

 † For absolute intensity per 100 decays, multiply by 0.495 *10*.

				β^- radiations
$E\beta^{-}$	E(level)	$I\beta^-$	Log ft	Comments
(2382.8)	2307.2	46 3	3.7 2	av E β =1008 67.
(3396.6)	1293.4	<4	>5.4	av E β =1494 68.
(3800.5)	889.5	41 2	4.7 2	av $E\beta = 1690 \ 68.$
(4258.3)	431.7	42	5.9 <i>3</i>	av $E\beta = 1913 \ 69.$
(4478.2)	211.8	82	5.7 2	av E β =2020 69.
(4690.00)	0	<1	>8.5	av E β =2136 69.

Decay Scheme

Intensities: $I_{(\gamma+ce)}$ per 100 parent decays

 $^{40}_{17}\text{Cl}_{23}$

9 Be(36 S, α p γ) 1993Ba62,1988Ko05

1993Ba62: E=105 MeV. Measured E γ , I γ , γ , γ (particle) coin. 1988Ko05: E=100 MeV. Measured E γ , I γ , $\gamma(\theta)$, γ , $\alpha p\gamma$ coin. All data are from 1993Ba62, unless otherwise stated.

⁴⁰Cl Levels

900 level proposed by 1988Ko05 has been omitted due to the revised placement of 219.52γ by 1993Ba62.

Nuclear Level Sequence

Yrast negative-parity structure. A multiplet (2- to 5-) is expected from weak coupling of 3/2+ g.s. of 37 Cl and 7/2- g.s. of 43 Ca. А

Seq.	E(level) [†]	Jπ‡	$T_{1/2}$
A	0	2-	
	211.60 13	(1-)	
А	244.03 8	(3-)	<10 ns#
	367.1 4	(2)	
	431.63 <i>21</i> ^{&}		
А	601.28 14	(4-)	<7 ns [#]
	680.95 17	(4-)	
А	839.16 15	(5-)	
А	2014.7 4	(6-)	\leq 3.5 ps [@]
	2194.2 <i>3</i>	(5)	
	2413.7 4	(6)	
А	2620.4 5	(7-)	\leq 3.5 ps [@]
А	4087.1 8	(8-)	-

[†] From least-squares fit to $E\gamma's$.

[‡] For excited states, the assignments are based on $\gamma(\theta)$ data and comparison of experimental level structure with shell-model calculations (particularly of 1989Wa09 and 1989Ji01). All assignments are given here under parentheses, although, some were quoted without parentheses by 1993Ba62. All assignments are the same as in Adopted Levels. [#] From electronic timing (1993Ba62).

^(a) From estimate of Doppler shift attenuation (1993Ba62). [&] Level population proposed (by the evaluators) based on ⁴⁰S β^- decay.

Asymmetry ratio R=yield at 135°/yield at 90° (1993Ba62). $\frac{\gamma(^{40}\text{Cl})}{2}$

\mathbf{E}_{i}^{level}	\mathbf{J}_i^{π}	\mathbf{E}_{f}^{level}	$\mathbf{J}_f^{m{\pi}}$	Eγ	I_{γ}	Mult.	Comments
Unplaced		<u> </u>		347 676.7 <i>3</i>	3.2 5		In coin with 244 γ , 437 γ and 220 γ . R(135°/90°)=0.96 30. A 677.9 γ is placed from an 888, 1+ level in β^- decay, but it seems unlikely that a 1+ level would be populated in (³⁶ S, $\alpha p \gamma$). Moreover a strong 889 transition from the same level seen in β^- decay is not reported
				2075	<0.6		in this reaction.
211.60	(1-)	0	2-	211.60 <i>13^b</i>	11.0 5	$(D)^{c}$	$R(135^{\circ}/90^{\circ})=0.99$ 8.
244.03 367.1	(3-) (2)	0 211.60	2- (1-)	244.04 8 ^b 155.5 <i>3</i>	100 2 0.4 2	(D) ^{<i>c</i>}	$R(135^{\circ}/90^{\circ})=0.96 \ 3.$
431.63		0	2-	431.63 21 ^{ab}	10 <i>I</i>		$R(135^{\circ}/90^{\circ})=0.99$ 10. Placement proposed from a 643 level by 1990En08.

\mathbf{E}_{i}^{level}	\mathbf{J}_i^π	\mathbf{E}_{f}^{level}	J_f^{π}	E_{γ}	I_{γ}	Mult.	Comments
601.28	(4-)	244.03	(3-)	357.36 14 ^b	43 2	(D) ^{<i>c</i>}	$R(135^{\circ}/90^{\circ})=0.94$ 3.
		0	2-	601.1 <i>3^b</i>	3.7 5		
680.95	(4-)	244.03	(3-)	436.86 <i>17^b</i>	26 2	$(D)^{c}$	R(135°/90°)=0.87 10.
839.16	(5-)	680.95	(4-)	157.8 <i>3</i>	3.0 2	$(D)^{c}$	R(135°/90°)=0.84 17.
		601.28	(4-)	237.93 9	31 <i>I</i>	$(D)^{c}$	$R(135^{\circ}/90^{\circ})=0.835$.
							E_{γ} : from 1988Ko05. E_{γ} =237.9 2
							(1993Ba62).
		244.03	(3-)	594.9 <i>4</i>	2.3 5		
2014.7	(6-)	839.16	(5-)	1175.4 <i>3</i>	7.1 20		
2194.2	(5)	680.95	(4-)	1513.6 4	6.0 20	$(D)^{c}$	$R(135^{\circ}/90^{\circ})=0.7$ 3.
		601.28	(4-)	1592.5 4	2.5 5		
2413.7	(6)	2194.2	(5)	219.52 <i>13^b</i>	9.0 5	$(D)^{c}$	$R(135^{\circ}/90^{\circ})=0.67$ 6.
							This γ was placed from a 900 level by
							1988Ko05
2620.4	(7-)	2014.7	(6-)	605.4 6	3.3 10		
		839.16	(5-)	1781.4 5	1.4 5		
4087.1	(8-)	2620.4	(7-)	1466.7 6	1.0 7		

γ ⁽⁴⁰Cl) (continued)

^{*a*} Placement proposed (by the evaluators) based on ⁴⁰S β^- decay. ^{*b*} γ reported by 1988K005 also. Value given here is the weighted average from 1993Ba62 and 1988K005. ^{*c*} $\gamma(\theta)$ data consistent with $\Delta J=1$, dipole.

⁴⁰Ar(⁷Li, ⁷Be), (¹¹B, ¹¹C) 1984Fi02

1984Fi02: E(⁷Li)=52, 54; E(¹¹B)=81 MeV. Measured Q values and low-lying levels in ⁴⁰Cl. FWHM=180 keV for ⁷Be spectra. Deduced mass excess for ⁴⁰Cl.

⁴⁰Cl Levels

E(level)	$\mathrm{J}^{\pi\dagger}$	Comments
0	2-‡	
230 40 640 30	$(4_{-})^{\ddagger}$	$I\pi$: other: 5, (198/Fi02)
840 30	$(4-)^{1}$ $(5-)^{\ddagger}$	$J\pi$: other: 3- (1984Fi02).
1160 40	(-)	$J\pi$: 4- (1984Fi02).
1580 40		
1740 40		
2020 40 2290 40		

[†] From Adopted Levels.

¹ 1984Fi02 suggest that low-lying levels of $J\pi$ =2- to 5- may arise from weak coupling of 3/2+ ³⁷Cl g.s. to levels in ⁴³Ca, as in ³⁸Cl. The assignment is considered as tentative by the evaluators.

Adopted Levels, Gammas

 $Q(\beta^{-})=-1504.69 \ 19$; $S(n)=9869 \ 5$; $S(p)=12528.7 \ 17$; $Q(\alpha)=-6800.74 \ 19 \ 2003Au03$

Other reactions:.

Muonic x ray: 2p_{3/2} to 1s_{1/2}: 643.674 keV 20 (1981Fr25, 1992Fr01), 643.94 keV 11 (1971Bb11,1976Pf01).

 $^{12}C(^{40}Ar,X)$ E=450 MeV/nucleon. Measured cross section.

 $^{40}\text{Ar}(X,X)$ E=5.9 keV: 1990Va11.

 40 Ar(μ^- ,X) E=125 MeV: 1999Ma14, measured capture rates.

⁴⁰Ar(π,π) E=180 MeV, measured $\sigma(\theta)$: 1986Ge01, 1985Ge04.

⁴⁰Ar(¹⁶O, ¹⁶O) E=100 MeV: 1985Sh06, measured $\sigma(\theta)$.

⁴⁰Ar(¹⁶O,¹⁶O') E=250 MeV/nucleon: 1996Ri19, 1996Ri09: deduced structure near isovector dipole and isoscalar quadrupole giant resonances.

⁴⁰Ar(³²S, ³²S) E=100 MeV: 1989A115, measured $\sigma(\theta)$.

⁴⁰Ca(e, π^+) E=400 MeV: 1983To18.

⁴⁰Ca(π^-, π^+) E=295 MeV: 1992Wa11, 1991Mo05: deduced double isovector giant-dipole resonance at 31.1 MeV with a Γ of 9.0 MeV. Others: 1989Gr06: E=180, 240 MeV; 1979Da16: E=290 MeV.

³⁶S(α, α): 1994An39: resonances were observed at E α =13320 (J π =7-) and E α =14120 (J π =8+).

Hyperfine structure and isotope shift measurements: 2003Sa20, 1996K104, 1988Mo30, 1986Mu06, 1982Ei01.

Mass measurement: 2003Fr08, 2002Bf02, 2001Wa50, 1998Ca53, 1997Br44, 1995Ya15, 1995Di08, 1968Sc01, 1968Fu11.

⁴⁰Ar Levels

Cross Reference (XREF) Flags

A B C D F	⁴⁰ Cl β ⁻ decay (1.35 min) ⁴⁰ K ε decay (1.248×10 ⁹ y) ²⁶ Mg(¹⁶ O,2pγ), ²⁷ Al(¹⁸ O,pαγ) ³⁶ S(α,γ):resonances ³⁷ Cl(α px)	I J K L	${}^{40}\text{Ar(e,e')}$ ${}^{40}\text{Ar(n,n'\gamma)}$ ${}^{40}\text{Ar(p,p'\gamma)}$ ${}^{40}\text{Ar(p,p'),(pol p,p')}$ ${}^{40}\text{Ar(p,p'),(dd')}$	Q R S T	$^{40}Ca(^{14}C,^{14}O)$ $^{41}K(d,^{3}He)$ $^{42}Ca(^{14}C,^{16}O)$ $^{44}Ca(^{3}He,^{7}Be)$ $^{44}Ca(^{2}Q)$
E	37 Cl(α ,p γ) 38 Ar(t.p)	M	40 Ar(pol d,d'),(d,d') 40 Ar(3 He 3 He')	U	$-Ca(\alpha, 2\alpha)$
G	38 Ar(α , ² He)	0	40 Ar(α, α')		
Н	40 Ar(γ,γ'),(pol γ,γ')	Ρ	Coulomb excitation		

E(level)	$J^{\pi^{\dagger}}$	T or Γ^{\ddagger}	XREF	Comments
0	0+	STABLE	ABCDEFGHIJKLMNOPQRSTU	$ \frac{\Delta < r^2 > (^{38}Ar^{-40}Ar) = 0.169 \text{ fm}^2 33 (1996\text{Kl04}), }{0.17 \text{ fm}^2 (1986\text{Mu06}).} $ From Muonic x-ray data: $< r^2 >_{1/2} = 3.415 \text{ fm} $ 5 (1976Pf01), 3.429 fm 6 (1971Bb11). J π : optical spectroscopy measurements: 1937Ko03, 1953Me73; no hyperfine structure
1460.851 6	2+	1.12 ps 4	ABCDEFGHIJKLMNOPQRSTU	seen. μ =-0.2 2 (1992Cu04). Q=+0.01 4 (1989Ra17,1970Na05). J π : L(α , α')=L(t,p)=L(pol d,d')=L(pol p,p')=2. μ : transient-field integral PAC. Q: reorientation in Coul. ex. (1970Na05).
2120.8 3	0+	90 ps 28	A DE JKLM O TU	$J\pi$: L(α, α')=L(p,p')=0.
2524.1 2	2+	0.220 ps 20	A DEF IJKLM O R T	J π : L(α, α')=L(pol d,d')=L(pol p,p')=2.
2892.60 11	4+	2.4 ps ⁵	A CDEFG KLM O T	$J\pi$: L(α, α')=L(pol d,d')=L(pol p,p')=4.
3208.0 6	2+	38 fs 10	A DEF IJKLM O RST	$J\pi$: L(t,p)=L(pol p,p')=2.
3464.48 13	6+	0.680 ns 20	C EFG O	J π : $\gamma(\theta, \text{pol})$ in (¹⁶ O,2p γ).
3511.3 5	2+	58 fs 9	A DEF IKLM 0 R T	$J\pi$: L(pol d,d')=2.
3515 <i>I</i>	4+	0.14 ps 3	EF o	J π : $\gamma(\theta, \text{pol})$ in $(\alpha, p\gamma)$.
3680.8 2	3-	0.124 ps 24	A DE IKLMO T	$J\pi$: L(α , α')=L(pol d,d')=L(pol p,p')=3.
3918.8 2	2+	0.28 ps 3	A DEF I KLm o	$J\pi$: L(t,p)=2.
3941.7 <i>3</i>			A mo u	J π : (1,2+) from possible γ to g.s.
4041 1	NATURAL	<21 ns	DEF KL O u	J π : 0+, 1-, 2+, 3-, 4+ from γ to 2+ and π =n in (α , α'). Ref: L: 4053.
4082.5 <i>2</i> 4178.9 <i>3</i>	3-	40 fs 14	A DEF KL O u A	J π : $\gamma(\theta, \text{pol})$ in $(p, p'\gamma)$ and $(\alpha, p\gamma)$.

E(level)	$\mathrm{J}^{\pi\dagger}$	T or Γ^{\ddagger}	X	REF					Comments
4226 <i>1</i> 4229 <i>1</i>	4- (1+,2-,3+)	>2.8 ps 0.17 ps <i>3</i>		E E		K KL	0		Jπ: $\gamma(\theta, \text{pol})$ in ($\alpha, p\gamma$); RUL. Jπ: unnatural parity from (α, α'); γ to 2+. Ref: L: 4240. Ref: O: 4220
4300.8 <i>3</i>	(1,3)-	58 fs 14	A	DE		L	0	S	J π : log <i>ft</i> =5.1 from 2-; natural parity in
4324.5 3	2+	17 fs 5	A	DEf			0	Rs	(α, α) . $J\pi$: L(d, ³ He)=0; L(t,p)=2.
4358.0 <i>3</i>	NATURAL		A			L	0	s	J π : from (α, α') ; possible γ to g.s.
4420 <i>1</i>	(0+ to 4+)	<21 ns		E		KIM	0		Ref: α : ?. J π : γ to 2+; natural parity in (α, α') for 4420
4427 1	(4+)	0.125 ps 20		EF		1	0		and/or 4427 gives 1-,2+,3-,4+. J π : L(t,p)=3,4; $\gamma(\theta,\text{pol})$ in $(\alpha, p\gamma)$ gives
1173 1	1#	0.070 eV 13		DF	ц				(3,4,5)+.
4481 0 3	1	< 0.070 ev 13	۸	DE	11	кт	n		$I\pi$: $\gamma(A)$ in $(p, p'\gamma)$: natural parity in (α, α')
4401.0 5	1-	<0.07 ps	А			ΝЦ	U		Ref. α . ?
4494 1	5-	0.50 ps 7		E					$I\pi$: $\gamma(\theta, \text{pol})$ in $(\alpha, p\gamma)$.
4562.3 2	(1.3)-	one o po ,	А	Ē			0	R	$J\pi$: log ft=5.4 from 2-: natural parity in
	(-,-)								(α, α') . Ref: R: 4530.
4578 1	(2+,3-)	37 fs 14	A	Е		L	0		$J\pi$: $\gamma(\theta)$ in $(\alpha, p\gamma)$; natural parity in (α, α') .
4602 1	(0+ to 4+)	50 fs 20		DE		L	0		$J\pi$: γ to 2+.
4674 1	(1+,2-,3+)	66 fs 17		Е		L	0	S	J π : γ to 2+; π =unnatural in (α , α').
1737 8 1			٨					c	$I\pi$: possible v to a s
4760.0.3	1 #	0.82 aV 6	A A	F	ы	т	Π	a	$I\pi$: π -natural in (α, α') : α to α s
4794 1	4+	52 fs <i>14</i>	А	EF	п	L	0		$J\pi$: (3,4)+ from $\gamma(\theta, \text{pol})$ in $(\alpha, \text{p}\gamma)$; L(t,p)=3,4.
4858 1	5-	37 fs 10		F					$I\pi$: $\gamma(\theta \text{ pol})$
4875 9	3-	57 15 10		F		L.M	0		$J\pi$: L(pol d.d')=3: L(t.p)=3.4.
4901 3	-			-	Н		-		$J\pi$: (1.2+) from possible γ to g.s.
4929 1	(1- to 4+)			Е					$J\pi$: γ 's to 2+ and 3
4942.6 4			А			L	0		
4959 1	(6)+	0.10 ps 4		Ef			0		J π : $\gamma(\theta, \text{pol})$ in $(\alpha, \text{p}\gamma)$; natural parity in (α, α') for either 4943 and/or 4959 level.
									$J\pi = (4+,5+)$ from $(\alpha, p\gamma)$ are less likely but not
4972 1	(2+.3.4+)			Ef					$J\pi$: γ 's to 2+ and 4+.
4991 <i>I</i>	4-	2.1 ps 7		E		L	0		$J\pi$: $\gamma(\theta, \text{pol})$; natural parity in (α, α') . Ref: O: 5004
5110 3					н				$I\pi$: possible γ to 0+
5115 2				EF					$J\pi$: L=(5) in (t.p).
5143 2	(5)	<10 fs		Е					$J\pi$: γ 's to 4+ and 6+; RUL disfavors E2.
5165.8 8	(2,3,4)+		А	Е			0	R	$J\pi$: L(d. ³ He)=0: γ 's to 2+ and 4+: natural
									parity in (α, α') favors (2,4)+. Ref: R: 5200.
5191				F					
5245 2	(0+ to 4+)			Е					$J\pi$: γ to 2+.
5270.1 4	(1-,2+,3-,4+)		A	Е		1	0	s	$J\pi$: $\dot{\gamma}$'s to 2+ and 3-; natural parity in (α, α') .
5293 2				Ef		1		S	$J\pi$: γ to 2+.
5310 2	NATURAL		A	Ef		1	0	S	J π : from (α, α') ; γ to 3
									Ref: α : ?.
5350 2				Е				S	$J\pi$: γ to 4+.
5378 2	(4+,5,6+)			Е					$J\pi$: γ 's to 4+ and 6+.
5400.5 8	1-#	0.030 eV 7	Α	F	Η	L	0		$J\pi$: natural parity in (α, α') .

⁴⁰Ar Levels (continued)

E(level)	$\mathrm{J}^{\pi\dagger}$	T or Γ^{\ddagger}	XR	REF					Comments
5454 15	3-,4+			F	L	0			$J\pi: L(t,p)=3,4.$
5508 2	NATURAL			EF		0			J π : from (α, α') ; γ to 4+.
5544 2	(0+ to 4+)			Е					J π : γ to 2+.
5559 2	(4+,5-,6+)			E		0			J π : γ 's to 4+ and 6+; natural parity in (α , α'). Ref: O: 5575.
5608.7 10	(1,2,3)		A	Е		0			$J\pi$: γ to 2+; log <i>ft</i> =6.0 from 2-; (natural) parity in ($\alpha \alpha'$) for a group near 5608
5611 2				Е		0			$J\pi$: γ to 6+.
5630 1			A	E		0			J π : (natural) parity from (α, α') for a doublet; γ to (4+).
5651 2				P					Ref: α : β .
5662 2				E F	1				$J\pi$: γ to 2+.
5675 2	(3, 4)			e ee	1	n			$J\pi$. γ to 4+.
5717 8 10	(3-,4+)		۵	EI.	1	n		11	$J\pi$. $L(t,p)=3,4$, natural parity in (α,α) .
5766 2			л	F	Ŧ	U		11	$I\pi$: γ to 2+
5818 2				EF			R	11	$I\pi$: I (t n)-(3.4): γ to 4+
5880.4.8	1_#	0.117 eV 13	۵	F H	m	0	10	u	$I\pi: \sqrt{s} \text{ to } 0+ \text{ and } 2+$
5885 2	3_	0.117 CV 15	Δ	E II	T m	0			$I\pi$: I (nol n n')=3: I (nol d d')=(3) But
5005 2	5-		л	ы		0			L(t n)=2 is inconsistent
5905.9 7	(1-)		A			0			$J\pi$: γ to 0+; log <i>ft</i> =5.8 from 2-; natural parity
5010 3	1#	0.050 11.17							in (α, α') .
5912 3	[" (1 + 4 +)	0.050 eV 17		н					
5913 2	(1 - to 4+)			E					$J\pi$: γ s to 2+ and 3
5951 2	(2+,3,4+)			E		~			$J\pi$: γ s to 2+ and 4+.
5950.5 10	(1,2)		А			U			$J\pi$: γ to 0+.
59/5 Z	$(1 + t_0, 7)$			E					$J\pi$: γ to $0+$.
0013 2	(4+ 10 7-)	0.41		с ,,					$J\pi$. γ s to 0+ and 5
6053.6 8 6054	1"	0.41 eV 0	A	Н	м	0			If I (not d d')-4; natural parity in ($\alpha \alpha'$)
6034	4+ (1.2.)#				М	0			JN: L(poi d,d)=4; hatural parity in (α, α) .
6100 2	$(1,2+)^{n}$			ЕH					$I_0=0.22 \text{ eV } 0 \text{ for } J(6100)=1; 0.13 \text{ eV } 4 \text{ for } J(6100)=2$
6104 2				E					J(0100) = 2. $I\pi \cdot \gamma to 4 +$
6138 2			А	EF	L	0			E(level): doublet: 6133+6138.
									$J\pi$: γ to 6+: but L=(2.3) in (p.p').
									Ref: α : ?.
6158 2	(4+,5,6+)			Е					$J\pi$: γ 's to 4+ and 6+.
6185 2				E					$J\pi$: γ to 5
6203 2				E		0	R		J π : γ to 4+; natural parity for a 6208 group in
									(α, α') .
									E(level): doublet: 6203+6208.
620.9 5 9	(1,2)								Ref: R: 6230.
6208.5 8	(1,2)		А	P	,	0			$J\pi$: γ to 0+.
6276.0.0	$(1 \ 2 \ 3)$		٨	E	1				$J\pi$: γ to $0+$.
6305.2	(1-,2-,3-) (4+5.6+)		А	FF	1				$I\pi$: y/s to A_{\pm} and 6_{\pm}
6229 7 11	(4+,5,0+) 1()#	0.20 aV 2	٨	LI. U	т				$J\pi$: log $f_{+}=5.6$ from 2
6356.2	$(4 \pm t_0, 7)$	0.29 EV 5	А	г п					$I\pi$: y/s to 5- and 6+
6450 3	(4+ 10 7-)			ц					3π . γ s to 5- and 6+.
6476.0.8	1(_)	0.43 eV 5	۵	Б Н	т				$I\pi$: $\gamma(A)$ in $(\gamma \gamma')$: log ft-5.6 from 2-
0470.00	1()	0.45 0 1 5	п	1 11	-				L(t,p)=2 is inconsistent.
6651.7 8			А	F	L				Ref: α : ?.
6703 <i>3</i>	1#			Н					
6760 15	3-,4+			F					$J\pi$: L(t,p)=3,4.
6806 2	(8+)			Е					J π : γ to (6+); possible analog state of ⁴² Ca
									(1983Bi08).
6835 15	3-,4+			F					$J\pi: L(t,p)=3,4.$
6979 2	(8-)			E					J π : γ to (6-); possible analog state of ⁴² Ca (1983Bi08).

⁴⁰Ar Levels (continued)

$^{40}_{18}\mathrm{Ar}_{22}\text{-}4$

			74 Lev	eis (contine	
E(level)	$\mathrm{J}^{\pi\dagger}$	T or Γ^{\ddagger}	XREF		Comments
7070 15			F		
7168 3	1#		ня		
7246 3	1#		н		
7281 3	1#		л Б Н	т	
7510 3	1#		г н г н	Ц	
7519 5	1		гп		
7640 15	$\frac{1}{2+}$		г Г		$I\pi: I(tn) - 2$
7708 3	1#		ч		3π . $L(t,p)=2$.
7730.3	1		F		
7018 2	1#		г г ч		Ref: F: 7800
7003 3	1#		Г II Г U		Kei. 1. 7690.
8022 3	1 2 #		гп		
8162 3	1,2+		п		$I_{\pi}: \psi(A \text{ pol})$
8102 J 8101 2	1-		п		J.M. 7(0, por).
0191 J 9202 2	1		п		
8303 3	1#		H		
8552 3	1#		H		
8383 3	1" 1#		H		
8644 3	1" 1.0.#		Н		
86/63	1,2+"		H		
8883 3	1" 1 #@		H		
8918 3	1-#@	0.34 eV <i>14</i>	D H		
9127 3	1- ^{#@}	0.71 eV 14	D H		
9138 6	(1-,2+) ^w		D		
9147 5	1-@		D		
9178 <i>3</i>	1-@		D		
9197 6	$(1-,2+)^{@}$		D		
9216 4	1-@		D		
9234 4	1-@		D		
9240 6	1-@		D		
9264 4	(1-,2+) [@]		D		
9273 6	1-@		D		
9287 4			D		
9296 5	(1-,2+)@		D		
9314 4	(1-,2+)@		D		
9330 4	1-@		D		
9337 <i>3</i>	1-@		D H		
9355 <i>3</i>	1-#@	1.0 eV 3	D H		
9373 4			D		
9412 <i>4</i>	1-#@	3.4 eV <i>18</i>	D H		E(level): doublet: 9408+9417 in (α, γ) with same J π for both; the second component seems to correspond to 9416 in (γ, γ') .
9425 5	$(1-,2+)^{@}$		D		(,,,).
9433 5	$(1-,2+)^{@}$		D		
9449.3	1-@		D		
9472.4	$(1-2+)^{@}$		D		
9485 5	1-@		D		
9491			D		
9503 2	1-	7.9 eV 13	D H		J π : $\gamma(\theta, \text{pol})$ in (γ, γ') ; $\gamma(\theta)$ in (α, γ) .
9527 4			D		$\cdots + (x_{i}, y_{i}, y_{i}) = (y_{i}, y_{i}, y_{i}) + (y_{i}, y_{i}) + (y_$
9565 4	1-@		D		
9583 <i>3</i>	1-#@	7.3 eV 21	D H		E(level): doublet:9581+9586 in (α, γ) ; the second component has $J\pi = (12+)$.
9596 4			D		r
9608 5			D		
9617 <i>3</i>	1-@		D		

⁴⁰Ar Levels (continued)

					<u> </u>	
E(level)	$\mathrm{J}^{\pi\dagger}$	T or Γ^{\ddagger}	XREF			Comments
9656 4	1-@	_	D			
9669 4	1-@		D			
9690 5	(1-,2+)@		D			E(level): doublet:9687+9694 with the same $L\pi$ for both
9735 <i>3</i>	1-@		D			<i>5n</i> 101 00th.
9757 <i>3</i>	1(-)#@	0.56 eV 22	D	Н		
9769 4	$(1-,2+)^{@}$		D			
9787 4	1-@		D			
9813 <i>3</i>	1-@		D			
9824 <i>3</i>	1-@		D			
9840 <i>3</i>	1#			Н		
9851 2	1-	21 eV 4	D	Η		J π : $\gamma(\theta, \text{pol})$ in (γ, γ') . E(level): doublet: 9849+9852 in (α, γ) .
9866 4			D			
9881 <i>4</i>	1-@		D			
9893 4	1-@		D			
9912 5	$(1-,2+)^{@}$		D			
9943 <i>3</i>	1-@		D			
9952 <i>3</i>	1(-)#	10 eV 3	D	Н		$J\pi$: parity from (α, γ) .
10090 3	1#			Н		
10151 <i>3</i>	1#			Н		
10180 2	1#			Н		
10362 <i>3</i>	1,2+#			Н		
10745 <i>3</i>	1#			Н		
10857 <i>3</i>	1#			Н		
$17.7 \times 10^3 2$	2				0	E(level): isoscalar giant-quadrupole resonance with $L(\alpha, \alpha')=2$.

⁴⁰Ar Levels (continued)

[†] In (d,³He) reaction, $J\pi(target)=3/2+$. [‡] Primarily from $(\alpha, p\gamma)$. Widths are from (γ, γ') and/or (α, γ) . Some lifetimes are also available from $(p, p'\gamma)$ and (α, γ) . [#] Weighted averages taken when values are available from more than one reactions.

 $\stackrel{\#}{=} \begin{array}{l} \gamma(\theta) \text{ in } (\gamma, \gamma'). \\ \stackrel{@}{=} \gamma(\theta) \text{ in } (\alpha, \gamma). \end{array}$

χ^{40} Ar)							
\mathbf{J}_i^{π}	\mathbf{E}_{f}^{level}	J_f^π	$E_{\gamma}{}^{\dagger}$	I_{γ}^{\ddagger}	Mult. [§]	δ^{\S}	Comments
2+	0	0+	1460.822 6	100	E2		B(E2)(W.u.)=9.3 4.
0+	1460.851	2+	660.1 4	100	[E2]		B(E2)(W.u.)=6.2 20.
2+	1460.851	2+	1063.1 2	100 2	M1+E2	-0.33 9	B(E2)(W.u.)=13 7.
							B(M1)(W.u.)=0.043 5.
	0	0+	2524.1 2	75 2	[E2]		B(E2)(W.u.)=1.32 13.
4+	2524.1	2+	369.0 6	1.0 5	[E2]		B(E2)(W.u.)=42 23.
	1460.851	2+	1431.76 10	100 2	E2		B(E2)(W.u.)=4.8 10.
2+	2892.60	4+	315.0 5	1.0 3	[E2]		$B(E2)(W.u.)=5.2\times10^3 21$
							is much higher than
							allowed by RUL.
	2120.8	0+	1087.6 4	21	[E2]		B(E2)(W.u.)=21 12.
	1460.851	2+	1746.5 2	100 1	M1+E2	+0.11 7	B(E2)(W.u.)=1.2 12.
							B(M1)(W.u.)=0.094 25.
	0	0+	3208.2 <i>3</i>	11 <i>I</i>	[E2]		B(E2)(W.u.)=0.52 15.
6+	2892.60	4+	571.88 8	100	E2		B(E2)(W.u.)=1.67 5.
							Mult.: $\gamma(\theta, \text{pol})$ in
							$(^{16}\text{O},2p\gamma).$
2+	3208.0	2+	303.0 6	22			
	$ \frac{J_{i}^{\pi}}{2+} \\ 0+ \\ 2+ \\ 4+ \\ 2+ \\ 6+ \\ 2+ $	$\begin{array}{ccc} \frac{\mathbf{J}_{i}^{\pi}}{2+} & \frac{\mathbf{E}_{f}^{level}}{0} \\ 0+ & 1460.851 \\ 2+ & 1460.851 \\ 4+ & 2524.1 \\ 1460.851 \\ 2+ & 2892.60 \\ \end{array}$ $\begin{array}{c} 0 \\ 2120.8 \\ 1460.851 \\ 460.851 \\ 6+ & 2892.60 \\ \end{array}$ $2+ & 3208.0 \\ \end{array}$	$\begin{array}{cccccc} J_{i}^{\pi} & E_{f}^{level} & J_{f}^{\pi} \\ \hline 2+ & 0 \\ 0+ & 1460.851 & 2+ \\ 2+ & 1460.851 & 2+ \\ 4+ & 2524.1 & 2+ \\ 2+ & 2892.60 & 4+ \\ \hline & & 2120.8 & 0+ \\ 1460.851 & 2+ \\ 2+ & & 2892.60 & 4+ \\ \hline & & 0 & 0+ \\ 6+ & & 2892.60 & 4+ \\ \hline & & 2+ & & 2460 & 4+ \\ \hline & & 2+ & & & & & \\ 2+ & & & & & & & & \\ 2+ & & & & & & & & \\ 2+ & & & & & & & & & \\ \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\frac{\gamma(^{40}\text{Ar})}{\frac{1}{2}}$ $\frac{J_{i}^{\pi}}{2+} \qquad \frac{E_{f}^{level}}{0} \qquad \frac{J_{f}^{\pi}}{0+} \qquad \frac{E_{\gamma}^{\dagger}}{1460.822} \qquad \frac{I_{\gamma}^{\ddagger}}{100} \qquad \frac{\text{Mult.}^{\$}}{\text{E2}} \qquad \frac{\delta^{\$}}{2}$ $\frac{0}{2+} \qquad \frac{1}{1460.851} \qquad \frac{2+}{2+} \qquad \frac{660.1}{100} \qquad \frac{1}{100} \qquad \frac{1}{122} \qquad \frac{1}{100} \qquad \frac{1}{222} \qquad \frac{1}{122} \qquad \frac{1}$

γ ⁽⁴⁰ Ar) (continued)								
\mathbf{E}_{i}^{level}	J_i^π	\mathbf{E}_{f}^{level}	$\mathbf{J}_f^{m{\pi}}$	$E_{\gamma}{}^{\dagger}$	I_{γ}^{\ddagger}	Mult. [§]	δ^{\S}	Comments
		2892.60	4+	621.1 6	22	[E2]		B(E2)(W.u.)= $2.0 \times 10^2 \ 20.$
		2524.1	2+	987	62	$M1(\cdot E2)$	0.05.11	$D(M1)(W_{rr}) = 0.025.6$
		1460.851	2+	2050.5 4	100 2 17 2	$MI(\pm E2)$	-0.05 11	B(M1)(W.u.)=0.035 0. B(E2)(W.u.)=0.30.6
3515	4+	2892.60	4+	622	52 3	M1(+F2)	-0.07.10	$B(M1)(W_{11})=0.3000$
5515		2524.1	2+	991	15.5	[E2]	0.07 10	B(E2)(W.u.)=47 19.
		1460.851	2+	2054	100 3	[E2]		B(E2)(W.u.)=8.1 18.
3680.8	3-	2892.60	4+	788.1 <i>3</i>	12 <i>1</i>	[E1]		B(E1)(W.u.)=0.00095 21.
		2524.1	2+	1156.2 4	52	[E1]		B(E1)(W.u.)=0.00013 6.
		1460.851	2+	2220.0 2	100 2	E1(+M2)	-0.07 +5-11	B(E1)(W.u.)=0.00035 7.
2010.0	2.	0	0+	3681	<6	11211		$\mathbf{D}(\mathbf{E}_{1})(\mathbf{M}_{1}) = 0.00072.0$
3918.8	2+	3680.8	3-	239.0 3	0.8	[EI]		B(E1)(W.u.)=0.000729.
		2324.1	2+ 0+	1394.7 3	15 3	[F2]		$B(F2)(W_{11}) = 12.3$
		1460 851	2+	2457 7 4	30.3	M1+E2		B(E2)(Wu) = 0.25.4
		1100.001	21	2137.77	505	1011 122		B(M1)(W.u.)=0.00047 8.
								δ : <-0.3 or >+6.
		0	0+	3918.6 2	100 5	E2		B(E2)(W.u.)=0.160 21.
3941.7		0	0+	3941.7 2	100			
4041	NATURAL	2524.1	2+	1517	100 22			
4092 5	2	1460.851	2+	2580	67 22	[[2]1]		$D(E1)(W_{re}) = 0.00011.5$
4082.5	3-	2524.1	2+	1558.74	3.1 0 100 1			B(E1)(W.u.)=0.00011 3. B(E1)(W.u.)=0.0008 3
		0	2+	4082.1.8	1001	[E1] [F3]		$B(E3)(Wu) = 1.6 \times 10^2 8$
4178 9		0	0+ 0+	4178 7 3	1.0 5	[[13]		$D(L3)(w.u.) = 1.0 \times 10^{-0.00}$
4226	4-	3680.8	3-	545	89 <i>4</i>	(M1+E2)	-10 +3-9	B(E2)(W.u.)=240.
		2892.60	4+	1333	100 4	(E1(+M2))	+0.6 +4-8	B(M1)(W.u.)=0.00036. $B(E1)(W.u.)=4.6 \times 10^{-5}$. B(M2)(W.u.)=63.
4229	(1+,2-,3+)	2524.1	2+	1705	100 4			
		1460.851	2+	2768	30 4			
4300.8	(1,3)-	3680.8	3-	621.1 6	<1			
		3208.0	2+	1092.9 8	2.17	[E1]		B(E1)(W.u.)=0.00015 7.
		2524.1	2+	1776.9 8	1.0 4	[E1]		$B(E1)(W.u.)=1.7 \times 10^{-5} 8.$
1221 5	2	1460.851	2+	2840.1 3	100 7	[EI]		B(E1)(w.u.)=0.00042 11.
4324.3	27	0	2+ 0+	2304 4324 2 3	41 7	[F2]		$B(F2)(W_{11})=0.8.3$
4358.0	NATURAL	0	0+	4357.6 3	100			B(E2)(11.0.)=0.0 5.
4420	(0+ to 4+)	3208.0	2+	1212	11 2			
		2524.1	2+	1896	10 2			
		1460.851	2+	2959	100 4			
4427	(4+)	2892.60	4+	1534	75 9	(M1+E2)		
4472	1	1460.851	2+	2966	100 9	[E2]		B(E2)(W.u.)=1.4 3.
4475	1	0	0+	4473	100	(F1)		
4481.0 4494	1- 5-	3515	0+ 4+	4480.7 <i>3</i> 979	15.2	(E1) [F1]		$B(F1)(W_{11})=0.000115.23$
7777	5	3464.48	6+	1029	46.3	(E1(+M2))	+0.06 + 7 - 10	B(E1)(W.u.)=0.000115.25
		2892.60	4+	1601	100 3	E1(+M2)	0.00 +6-9	B(E1)(W.u.)=0.00018 3.
4562.3	(1,3)-	4300.8	(1,3)-	261.2 7	72			
		4082.5	3-	479.9 4	7.0 14			
		3918.8	2+	643.6 <i>3</i>	56 8			
		3680.8	3-	881.3 3	24 6			
		3311.3	2+	1051.1 5	41			
		5208.0 1460.851	∠+ 2+	1555.7 5 3101 7 A	2 I 100 I0			
4578	(2+3-)	4358.0	NATURAL	222.5 5	100 10			
	(,)	3511.3	2+	1067	90 10			
		3208.0	2+	1370	38.5			

	γ ⁽⁴⁰ Ar) (continued)							
\mathbf{E}_{i}^{level}	${ m J}^{\pi}_i$	\mathbf{E}_{f}^{level}	J_f^π	${\rm E}_{\gamma}^{\dagger}$	Iγ [‡]	Mult. [§]	δ^{\S}	Comments
		2892.60	4+	1685	100 10			
		1460.851	2+	3117	28 5			
		0	0+	4580.1 5				
4602	(0+ to 4+)	2524.1	2+	2078	100 2			
	· · · · ·	1460.851	2+	3141	11 2			
4674	(1+,2-,3+)	1460.851	2+	3213	100			
4737.8		0	0+	4737.5 4				
4769.0	1-	0	0+	4768.7 <i>3</i>	100			
4794	4+	2892.60	4+	1901	100 10	M1+E2		B(E2)(W.u.)=13 4.
								B(M1)(W.u.)=0.015 5.
		1460.851	2+	3333	100 10	[E2]		B(E2)(W.u.)=1.6 5.
4858	5-	4494	5-	364	15 8			
		3464.48	6+	1394	36 2	[E1]		B(E1)(W.u.)=0.0014 4.
		2892.60	4+	1965	100 3	E1(+M2)	-0.09 +8-12	B(E1)(W.u.)=0.0014 4.
4901		0	0+	4901 <i>3</i>				
4929	(1- to 4+)	3680.8	3-	1248	100 8			
		2524.1	2+	2405	44 6			
		1460.851	2+	3468	56 6			
4942.6				361.3 5	90 20			
		4562.3	(1,3)-	381.0 5	100 40			
4959	(6)+	3515	4+	1444	100 5	E2		B(E2)(W.u.)=70 30.
		2892.60	4+	2066	56 5	E2		B(E2)(W.u.)=7 3.
4972	(2+,3,4+)	2892.60	4+	2079	100 7			
		1460.851	2+	3511	69 7			
4991	4-	4226	4-	765	100 2	(M1+E2)		
		4082.5	3-	909	11 1			
		3680.8	3-	1310	10 1			
5110		0	0+	5110 3	100			
5115	(5)	3464.48	6+	1651	100			
5143	(5)	3515	4+	1628	20 2			
5165 0	(2, 2, 4)	3464.48	6+	16/8	100 2			
5165.8	(2,3,4)+	3313	4+	1650	100 4			
		1400.831	2+	5165 5 10	454			
5245	$(0 + t_0, 1 +)$	0	0+	2784	4 Z 100			
5245 5270 1	(0+10.4+) (1-2+2.4+)	1400.831	2+	3/84 11967 /	74.22			
5270.1	(1-,2+,3-,4+)	3680.8	3	1580.0.3	100.35			
		3208.0	3- 2+	2063 0 10	100 55			
5203		1460.851	$2\pm$	2005.0 10	100			
5310	NATURAL	4562.3	(1 3)-	748	23.2			
5510	TWII CIUIL	4082.5	3-	1228	85.6			
		3680.8	3-	1629	100.6			
		0	0^{+}	5309.6 10	100 0			
5350		2892.60	4+	2457	100			
5378	(4+.5.6+)	3515	4+	1863	42 4			
	()-) -)	3464.48	6+	1913	55 4			
		2892.60	4+	2485	100 8			
5400.5	1-	0	0+	5400.1 8	100			
5508	NATURAL	3515	4+	1993	100			
5544	(0+ to 4+)	1460.851	2+	4083	100			
5559	(4+,5-,6+)	3515	4+	2044	46 4			
		3464.48	6+	2094	61 4			
		2892.60	4+	2666	100 7			
5608.7	(1,2,3)	1460.851	2+	4147.7 10	100			
5611		3464.48	6+	2147	100			
5630		4427	(4+)	1203	100			
		0	0+	5629.0 10				
5654		2524.1	2+	3130	100			
5662		2892.60	4+	2769	100			

	$\gamma(^{40}\text{Ar})$ (continued)							
\mathbf{E}_{i}^{level}	J_i^π	\mathbf{E}_{f}^{level}	$\mathbf{J}_f^{m{\pi}}$	${\rm E}_{\gamma}^{\dagger}$	Iγ [‡]	Mult. [§]	$\delta^{\$}$	Comments
5675	(3-4+)	3680.8	3-	1994	100			
5717.8	(0,11)	2524.1	2+	3193.7 10	100			
5766		3208.0	2+	2558	100			
5818		2892.60	<u>4</u> +	2925	100			
5880 4	1_	4562.3	$(1 3)_{-}$	1317.2.5	10.3			
5000.4	1	4300.8	(1,3)	1579.9.8	83			
		2524.1	(1,3) 2_{\pm}	3356.6.8	83			
		2120.8	0+	3759.9.10	2613			
		0	0+	5879 6 12	100 5			
5885	3-	2892.60	4+	2992	100 7			
5005	5	1460 851	2+	4424	87 7			
5905 9	(1-)	2120.8	0+	3784 9 6	100			
5912	1	0	0+	5912 3	100	D		
5913	(1 - to 4 +)	4082.5	3-	1830	100 10	D		
5715	(1 (0 +1)	3208.0	2+	2704	100 10			
5931	(2+3.4+)	2892.60	4+	3038	100 10			
5751	(2+,3,++)	1460 851	2+	4470	39.6			
5950 5	(1 2)	0	0+	5950.0.10	100			
5973	(1,2)	3464 48	6+	2508	100			
6013	(4+ to 7-)	4494	5-	1519	100 6			
0015	(11.007)	3464 48	6+	2548	100.6			
6053.6	1	0	0+	605318	100 0			
6100	(1.2+)	1460 851	2+	4639	100 7			
0100	$(1,2^{+})$	0	0^{+}	6100	33 7			
6104		2892.60	4+	3211	100			
6138		3464 48	6+	2674	100			
6158	(4+.5.6+)	3464.48	6+	2693	100 2			
0100	(11,0,01)	2892.60	4+	3265	15.2			
6185		4494	5-	1691	100			
62.03		2892.60	4+	3310	100			
6208.5	(1.2)	0	0+	6208.0 8	100			
6270	(-,-)	3464.48	6+	2805	100			
6276.0	(1 2 3 -)	4942.6		1333.4 8	100			
6305	(4+.5.6+)	3515	4+	2790	100 8			
	()-) -)	3464.48	6+	2840	67.8			
6338.7	1(-)	0	0+	6338.2 11	100			
6356	(4+ to 7-)	4858	5-	1498	100 7			
		3464.48	6+	2891	49 7			
6450		0	0+	6450 <i>3</i>				
6476.0	1(-)	0	0+	6475.5 8	100			
6651.7		5608.7	(1,2,3)	1042.3 <i>3</i>	100			
6703	1	0	0+	6703 <i>3</i>	100			
6806	(8+)	4959	(6)+	1847	100			
6979	(8-)	5973		1006	100			
7168	1	0	0+	7168 <i>3</i>	100			
7246	1	0	0+	7246 <i>3</i>	100			
7281	1	0	0+	7281 <i>3</i>	100			
7519	1	0	0+	7519 <i>3</i>	100			
7626	1			6168 <i>3</i>				
		0	0+	7626 <i>3</i>	100			
7708	1	0	0+	7708 <i>3</i>	100			
7918	1	0	0+	7918 2	100			
7993	1	0	0+	7993 <i>3</i>	100			
8032	1,2+	1460.851	2+	6570 <i>3</i>				
		0	0+	8032 <i>3</i>	100			
8162	1-	1460.851	2+	6703 2				
		0	0+	8162 2	100	E1		
8191	1	0	0+	8191 <i>3</i>	100			
8303	1	0	0+	8303 <i>3</i>	100			

	γ ⁽⁴⁰ Ar) (continued)								
\mathbf{E}_{i}^{level}	J_i^π	\mathbf{E}_{f}^{level}	$\mathbf{J}_f^{\boldsymbol{\pi}}$	$E_{\gamma}{}^{\dagger}$	I_{γ}^{\ddagger}	Mult. [§]	δ^{\S}	Comments	
8552	1	0	0+	8552 3	100				
8585	1	Ő	0+	8585 3	100				
8644	1	0	0+	8644 3	100				
8676	1 2+	0	0+	8676 3	100				
8883	$1, 2 \pm$	0	0+	8883 3	100				
888J 9019	1	0	0+	2019 2	100				
0127	1-	0	0+	0127 2	100				
9127	1-	0	0+	9127 3	100				
9337	1-	4200.8	(1.2)	9337 J 5054	7				
9333	1-	4300.8	(1,3)-	5426	0				
		0	2+	0256 2	0				
0412	1	4082.5	0+	9330 3 5221	54				
9412	1-	4062.5	3-	5404	54 40				
		2511.2	2+	5002	40				
		3511.5	2+	5902	51				
		2324.1	2+	0009	0.0 21				
		1400.851	2+	7952 0416-2	31 100				
0440	1	2511.2	2.	9410 3	100				
9449	1-	2208.0	2+	5958	23				
		3208.0	2+	0241	25				
		2892.00	4+	0000	11				
		2524.1	2+	0925	3/				
		2120.8	0+	7528	34 100				
		1400.851	2+	7988	100				
0502	1	0	0+	9449 5596	09				
9303	1-	2120.8	2+	3380	2				
		2120.8	0+	/ 363	2				
		1400.831	2+	0045 0502	/				
0592	1	2018.8	0+	9305 5664	100				
9383	1-	3910.0	2+	5004	12				
		2892.00	4+	7050	12				
		2324.1	2+	7039	61				
		2120.0	0+	7402 9122	44				
		0	2+	0582 3	100				
0617	1	2018.8	0+	9382 J 5600	1100				
9017	1-	2690.9	2+	5026	11				
		2511.2	3-	5930	4				
		3208.0	$\frac{2+}{2+}$	6409	4				
		2802.60	2+ 4+	6724	3				
		2692.00	4+ 2+	7003	15				
		2120.8	2+ 0+	7406	7				
		1460.851	2^+	8156	100				
		0	2+ 0+	9617	67				
0600	(1, 2+)	4602	$(0\pm to 4\pm)$	5088	26				
7070	(1-,2+)	4324 5	(0+10+) 2+	5365	15				
		3018.8	2^+	5771	11				
		3511.3	2+	6175	11				
		3208.0	2+	6482	9				
		2524.1	2+	7166	100				
		1460 851	2+	8229	7				
		0	0+	9690	6				
9735	1-	4602	(0+ to 4+)	5133	10				
1.00		3918.8	2+	5816	27				
		3208.0	2+	6527	23				
		2524 1	2+	7211	10				
		2120.8	0+	7614	15				
		1460.851	2+	8274	23				
		0	0+	9735	100				
9757	1(-)	0	0+	9757 <i>3</i>	100				

γ (continued)								
\mathbf{E}_{i}^{level}	\mathbf{J}_i^{π}	\mathbf{E}_{f}^{level}	$\mathbf{J}_{f}^{m{\pi}}$	$E_{\gamma}{}^{\dagger}$	I_{γ}^{\ddagger}	Mult. [§]	δ^{\S}	Comments
9824	1-	3918.8	2+	5905	40			
		3680.8	3-	6143	36			
		3511.3	2+	6313	8			
		3208.0	2+	6616	52			
		2524.1	2+	7300	68			
		2120.8	0+	7703	28			
		1460.851	2+	8363	100			
		0	0+	9824	68			
9840	1	0	0+	9840 <i>3</i>	100			
9851	1-	2892.60	4+	6957	19			
		2524.1	2+	7326	60			
		1460.851	2+	8389	53			
		0	0+	9850 <i>2</i>	100	E1		
9943	1-	3918.8	2+	6024	13			
		2524.1	2+	7419	61			
		2120.8	0+	7822	24			
		1460.851	2+	8482	66			
		0	0+	9943	100			
9952	1(-)	4324.5	2+	5628	6			
		4041	NATURAL	5912	3			
		3918.8	2+	6034	3			
		2524.1	2+	7429	13			
		1460.851	2+	8492	17			
		0	0+	9950 <i>3</i>	100			
10090	1	0	0+	10090 <i>3</i>	100			
10151	1	0	0+	10151 <i>3</i>	100			
10180	1	0	0+	10180 2	100			
10362	1,2+	0	0+	10362 <i>3</i>	100			
10745	1	0	0+	10745 <i>3</i>	100			
10857	1	0	0+	10857 <i>3</i>	100			

(40 Ar) (continued)

[†] Primarily from ⁴⁰Cl β^- decay and $(\alpha, p\gamma)$. Values from (α, γ) , (γ, γ') and $(p, p'\gamma)$ are level-energy differences. [‡] From ⁴⁰Cl β^- decay, (α, γ) , $(\alpha, p\gamma)$ and $(p, p'\gamma)$. [§] From $(\alpha, p\gamma)$ and $(p, p'\gamma)$.

40 Cl β^- decay (1.35 min) 1972Kl06,1970Ke12

- Parent: ⁴⁰Cl: E=0; J π =2-; T_{1/2}=1.35 min 2; Q=7480 30; % β -=100 1972K106 (also 1973K102,1981HuZT): measured E γ , I γ , γ , T_{1/2}.
- 1970Ke12: measured E γ , I γ , γ , T_{1/2}.
- 1989Mi03: measured $\beta\gamma$ coin. 1968Hu07, 1965Gr03, 1956Mo39: measured $E\gamma$, $I\gamma$, $T_{1/2}$.
- Thesis (M.S.) by E.L. Robinson (Purdue, 1958). $E\gamma$, $I\gamma$ data and level scheme from this work are quoted by 1970Ke12. This thesis was not available to the present evaluators.

	⁴⁰ Ar L	Levels
E(level)	$J^{\pi \#}$	T _{1/2}
0	0+	STABLE
1460.77 5	2+	
2120.80 19	0+	
2524.01 12	2+	
2892.43 21	4+	
3207.87 14	2+	
3511.50 24	2+	
3680.48 14	3-	
3918.80 13	2+	
3941.91 <i>20</i> †		
4082.58 17	3-	
4178.9 <i>3</i> †		
4300.99 23	(1,3)-	
4324.5 3	2+	
4358.0 <i>3</i> †		
4481.0 <i>3</i> [†]	1-	
4562.23 16	(1,3)-	
4580.7 4^{\dagger}	(2+,3-)	
4737.8 <i>4</i> [†]		
4769.0 <i>3</i>	1-	
4942.6 <i>4</i> [†]		
5165.7 7	(2,3,4)+	
5269.5 <i>3</i>		
5310.0 <i>10</i> [‡]		
5400.5 8	1-	
5609.4 8	(1,2,3)	
5629.4 <i>10</i> [‡]		
5717.8 <i>10</i> [†]		
5880.1 4	1-	
5905.9 7	(1-)	
5950.5 10	(1,2)	
6053.6 8	1	
6133.5 <i>10[@]</i>		
6208.5 8	(1,2)	
6276.0 9	(1-,2-,3-)	
6338.7 11	1(-)	
6476.1 8	1(-)	
6651.7 8		

[†] Level considered as improbable based on results of $(\alpha, p\gamma)$ study of 1983Bi08.

[‡] Level considered as improbable since the decay mode is very different from that in $(\alpha, p\gamma)$ (1983Bi08) from a level near the same energy.

From Adopted Levels.
@ From 1981HuZT only.

 $\gamma(^{40}{\rm Ar})$

E_{γ}^{\ddagger}	\mathbf{E}_{i}^{level}	\mathbf{J}_i^{π}	\mathbf{E}_{f}^{level}	\mathbf{J}_f^{π}	$I_{\gamma}^{\dagger \ddagger}$
222.5 5	4580.7	(2+,3-)	4358.0		0.20 6
239.0 3^{b}	3918.80	2+	3680.48	3-	$0.28 \ 13^{b}$
261.2 7^{b}	4562.23	(1.3)-	4300.99	(1.3)-	$1.0 I^{b}$
270^{a}	5880.1	1-	5609.4	(1.2.3)	
303.0 6	3511.50	2+	3207.87	2+	0.07 4
315.0 5	3207.87	2+	2892.43	4+	0.03 1
361.3 5	4942.6		4580.7	(2+,3-)	0.09 2
369.0 6	2892.43	4+	2524.01	2+	0.02 1
381.0 5	4942.6	_	4562.23	(1,3)-	0.10 4
472.0 4	3680.48	3-	3207.87	2+	0.3 1
479.9 4 ^b	4562.23	(1,3)-	4082.58	3-	$1.1 2^{b}$
$621.1 \ 6^{j}$	3511.50	2+	2892.43	4+	< 0.3 ^j
$621.1 6^{j}$	4300.99	(1,3)-	3680.48	3-	$< 0.3^{j}$
643.6 3 ^b	4562.23	(1,3)-	3918.80	2+	8.3 6 ^b
660.1 4^{b}	2120.80	0+	1460.77	2+	$3.1 \ 3^{b}$
788.1 3 ^b	3680.48	3-	2892.43	4+	1.0 <i>I^b</i>
881.3 <i>3^b</i>	4562.23	(1,3)-	3680.48	3-	$3.2 \ 3^{b}$
1042.3 3	6651.7		5609.4	(1,2,3)	0.6 2
1051.1 5	4562.23	(1,3)-	3511.50	2+	0.6 1
$1063.1 2^{o}$	2524.01	2+	1460.77	2+	2.9 30
1087.6 4	3207.87	2+	2120.80	0+	0.10 5
1092.9 80	4300.99	(1,3)-	3207.87	2+	0.33 70
1156.2 4	3680.48	3-	2524.01	2+	0.6 1
1180./4	5209.5 5880 1	1	4082.58	(1.3)	0.91
1317.2 5	5000.1 6276.0	(1 - 2 - 3 -)	4302.23	(1,3)-	0.30 0
1353.4 0	4562.23	$(1^{-}, 2^{-}, 3^{-})$	3207.87	2+	0.407
1394.7 3	3918.80	2+	2524.01	2+	1.5 2
1432.1 4^b	2892.43	4+	1460.77	2+	$2.0 \ 2^{b}$
$1460.73.5^{b}$	1460.77	2+	0	0+	100^{b}
1558.7 4	4082.58	3-	2524.01	2+	0.60 7
1579.9 8	5880.1	1-	4300.99	(1,3)-	0.4 1
1589.0 <i>3^b</i>	5269.5		3680.48	3-	$1.2 \ 2^{b}$
1746.5 2 ^b	3207.87	2+	1460.77	2+	3.3 <i>3^b</i>
1776.9 8	4300.99	(1,3)-	2524.01	2+	0.020 3
1797.8 2 ^b	3918.80	2+	2120.80	0+	2.7 4^{b}
2050.5 4	3511.50	2+	1460.77	2+	1.3 2
2063.0 10	5269.5		3207.87	2+	0.5 2
2220.0 2^{b}	3680.48	3-	1460.77	2+	8.6 12^{b}
2457.7 4 ^b	3918.80	2+	1460.77	2+	5.8 10^{b}
2524.1 2 ^b	2524.01	2+	0	0+	2.5 3 ^b
2621.7 2 ^b	4082.58	3-	1460.77	2+	18.1 <i>16^b</i>
2840.1 3 ^b	4300.99	(1,3)-	1460.77	2+	34 <i>5^b</i>
3101.7 4 ^b	4562.23	(1,3)-	1460.77	2+	14.0 20^d
3193.7 <i>10^c</i>	5717.8		2524.01	2+	0.10 5
3208.2 3	3207.87	2+	0	0+	0.6 1
3356.6 8	5880.1	1-	2524.01	2+	0.4 1
3511.0 3	5165 7	(2, 2, 4)	0	0+	0.20 8
3759910	5880.1	(2,3,4)+	1400.77	2+ 0+	1.01
378496	5905.9	(1-)	2120.80	0+	0.105
3918 6 2 ^b	3918.80	2+	0	0+	485^{b}
3941 7 2 ^c	3941 91		0	0+	0.20 5
4082.1 8	4082.58	3-	Õ	0+	0.30 6
4147.7 10	5609.4	(1,2,3)	1460.77	2+	1.1 1
4178.7 <i>3^c</i>	4178.9		0	0+	0.30 7
4324.2 <i>3</i>	4324.5	2+	0	0+	0.20 5
4357.6 <i>3^c</i>	4358.0		0	0+	0.50 7

Eγ [‡]	\mathbf{E}_{i}^{level}	\mathbf{J}_i^{π}	\mathbf{E}_{f}^{level}	${ m J}_f^{\pi}$	$I_{\gamma}^{\dagger \ddagger}$
4480.7 <i>3^c</i>	4481.0	1-	0	0+	0.30 7
4580.1 5 ^c	4580.7	(2+,3-)	0	0+	0.10 4
4737.5 <i>4</i> °	4737.8		0	0+	0.5 1
4768.7 <i>3</i>	4769.0	1-	0	0+	0.6 1
5165.5 10	5165.7	(2,3,4)+	0	0+	0.10 5
5309.6 <i>10^c</i>	5310.0		0	0+	0.2 1
5400.1 8	5400.5	1-	0	0+	0.20 8
5629.0 <i>10^c</i>	5629.4		0	0+	0.10 5
5879.6 <i>12^b</i>	5880.1	1-	0	0+	5.0 4^{b}
5950.0 <i>10</i>	5950.5	(1,2)	0	0+	0.05 3
5053.1 8	6053.6	1	0	0+	0.40 6
5133 ^a	6133.5		0	0 +	$\approx 0.05^{e}$
5208.0 8	6208.5	(1,2)	0	0 +	0.05 3
5338.2 <i>11^b</i>	6338.7	1(-)	0	0+	$0.32 \ 9^{b}$
5475.5 8	6476.1	1(-)	0	0+	0.20 3

 γ (⁴⁰Ar) (continued)

[†] For absolute intensity per 100 decays, multiply by 0.81 4 [‡] From 1972K106, unless otherwise stated. ^{*a*} From 1981HuZT only, intensity is not available. ^{*b*} Weighted average from 1972K106 and 1970Ke12. ^{*c*} Placement questioned by 1983Bi08 based on their (α ,p γ) study. ^{*d*} From 1972K106, obtained in indirect method. Other: 5 3 in 1970Ke12. ^{*e*} From β feeding quoted by 1981HuZT. ^{*f*} Multiply placed with undivided intensity.

0_	
К	radiations
Ρ	radiations

$E\beta^{-}$	E(level)	I β^-	Log ft	Comments
(8.3E+2)	6651.7	0.49 16	4.8 2	av E β =301 14.
(1.00E+3)	6476.1	0.16 3	5.6 1	av $E\beta = 376 \ 14$.
(1.14E+3)	6338.7	0.26 8	5.6 2	av $E\beta = 436 \ 15.$
(1.20E+3)	6276.0	0.32 6	5.6 1	av $E\beta = 464$ 15.
(1.27E+3)	6208.5	0.041 25	6.6 <i>3</i>	av E β =494 15.
(1.35E+3)	6133.5	0.04	6.7	av E β =527 15.
				I β : from 1981HuZT.
(1.43E+3)	6053.6	0.32 6	5.9 1	av E β =563 15.
(1.53E+3)	5950.5	0.041 25	6.9 <i>3</i>	av $E\beta = 610 \ 15.$
(1.57E+3)	5905.9	0.65 9	5.8 1	av $E\beta = 631 \ 15.$
(1.60E+3)	5880.1	5.2 5	4.91 6	av E β =642 15.
(1.76E+3)	5717.8	0.08 4	6.9 2	av E β =717 15.
(1.85E+3)	5629.4	0.08 4	7.0 2	av E β =758 15.
(1.87E+3)	5609.4	0.89 10	6.0 1	av E β =767 15.
(2.08E+3)	5400.5	0.16 7	6.9 2	av E β =865 15.
(2.17E+3)	5310.0	0.16 9	7.0 <i>3</i>	av E β =907 15.
(2.21E+3)	5269.5	2.1 3	5.9 1	av E β =926 15.
(2.31E+3)	5165.7	0.89 10	6.4 1	av E β =975 16.
(2.71E+3)	4769.0	0.49 9	6.9 1	av E β =1164 <i>16</i> .
(2.74E+3)	4737.8	0.41 9	7.0 1	av E β =1179 <i>16</i> .
(2.90E+3)	4580.7	0.17 7	7.5 2	av E β =1254 16.
(2.92E+3)	4562.23	22.6 21	5.38 5	av E β =1263 16.
				Energy: 2729 145 (1989Mi03) from β (3101 γ).
(3.00E+3)	4481.0	0.24 6	7.4 1	av E β =1302 16.
(3.12E+3)	4358.0	0.24 8	7.5 2	av E β =1361 16.
(3.16E+3)	4324.5	0.16 5	7.7 2	av E β =1377 <i>16</i> .
(3.18E+3)	4300.99	27 5	5.5 1	av E β =1389 <i>16</i> .
				Energy: 3086 75 (1989Mi03) from β (2840 γ).
(3.30E+3)	4178.9	0.24 6	7.6 1	av E β =1448 16.
(3.40E+3)	4082.58	13.8 15	5.9 1	av E β =1494 <i>16</i> .

$E\beta^{-}$	E(level)	$I\beta^-$	Log ft	Comments
				Energy: 3070 100 (1989Mi03) from $\beta(2622\gamma)$.
(3.54E+3)	3941.91	0.16 6	7.9 2	av $\mathbf{E}\beta = 1562 \ 16.$
(3.56E+3)	3918.80	5.5 12	6.4 1	av $E\beta = 1573 \ 16.$
(3.80E+3)	3680.48	4.6 11	6.6 <i>1</i>	av $E\beta = 1689 \ 16.$
(3.97E+3)	3511.50	0.91 21	7.4 1	av $E\beta = 1771 \ 16.$
(4.27E+3)	3207.87	2.1 4	7.2 1	av $E\beta = 1919 \ 16.$
(4.59E+3)	2892.43	0.68 20	9.5 1	av E β =2085 16.
(4.96E+3)	2524.01	1.7 5	7.5 1	av E β =2253 16.
(6.02E+3)	1460.77	4 4	> 8.0	av E β =2774 16.
(7.48E+3)	0	<9	>9.8	av E β =3500 16.
				Energy: 7390 118 (1989Mi03).
				I β : only available experimental value is 9% from E.L. Robinson (M.S.
				thesis, Purdue, 1958). This value has been quoted in several papers
				(1989Mi03,1981HuZT,1972Kl06,1970Ke12) and in Endt's compilations.
				1970Ke12 quoted I β =9-18%, again based on Robinson's data, suggesting
				equal feedings to the ground state and the first excited state. The singles
				β spectrum of 1989Mi03 does show that there is a direct feeding to the
				ground state, but in the opinion of the evaluators, precise feeding is not
				known. log $f^{lu}t > 8.5$ expected for first-forbidden unique transition allows
				up to 100% feeding.

 β^- radiations (continued)

Decay Scheme

Intensities: I_{γ} per 100 parent decays

Decay Scheme (continued)

⁴⁰K ε decay (1.248×10⁹ y) 1999BeZQ,1999BeZS

Parent: ⁴⁰K: E=0; $J\pi$ =4-; $T_{1/2}$ =1.248×10⁹ y 3; Q=1504.69 19; % ε =10.86 13

J: From unique 3rd forbidden β^- spectral shape for decay to 0+ level and L transfer in charge-particle reactions.

T: From 2004Ko09 and 2002Gr01; the same value from measurements of specific activity of natural potassium salts using liquid-scintillation counting (LSC) technique. (2002Gr01 reported a value of 1.248×10^9 y 2, later adjusted to 1.248×10^9 y 3 by 2004Ko09 to correct the quoted uncertainty on measured isotopic abundance of 40 K.) Both papers used natural abundance of 40 K as 0.01167% 2 (1975Ga24). The natural abundance of 40 K=0.0117% 1 (as recommended in the International Union of Pure and Applied Chemistry 70, 217 (1998), based on the measured value of 1975Ga24) would give about four times larger uncertainty on $T_{1/2}$. The earlier values of 1.265×10^9 y 13 (1999BeZS,1999BeZQ) based on recomputation of 1.277×10^9 y 8 (evaluation by 1973EnVA); and 1.26×10^9 y 1 (evaluation by 1990Ho28 from 14 different measurements out of a total of 34 measurements listed) are in good agreement. Variation of $T_{1/2}$ due to environmental conditions has been studied by 2001No10, where no significant effect has been reported. Earlier (pre-1977) measurements of partial ($\beta^$ and ce) and/or total $T_{1/2}$ of 40 K: 1977Ce04, 1972Go21, 1966Fe09, 1965Le15, 1965Br25, 1962Fl05, 1961Gl07, 1960Sa31, 1960Eg01, 1959Ke26, 1957We43, 1956Mc20, 1955Ba25, 1955Ko21, 1955Su38, 1953Bu58, 1950Sa52, 1947Gl07. Another 16 references (from 1931 to 1971) are listed by 1990Ho28 and in the 1978 Table of Isotopes (1978LeZA); but are not present in the NSR database.

Q(g.s.): From 2003Au03.

1999BeZQ, 1999BeZS: evaluations of ⁴⁰K decay.

Measurements: 2004Ko09, 2002Gr01, 2001No10, 1977Ce04, 1972Go21, 1967Mc10, 1966Fe09, 1965Le15, 1965Br25, 1962Fl05, 1962En01, 1961Gl07, 1960Sa31, 1960Eg01, 1959Ke26, 1957We43, 1956Mc20, 1955Ba25, 1955Ko21, 1955Su38, 1953Bu58, 1952Fe16, 1951Go29, 1951De34, 1950Sa52, 1949Ov01, 1948Ev09, 1947Gl07. This list is not complete, see 1978LeZA for several other references that are not present in NSR database.

The decay scheme, which includes the β^- decay to the ground state of ⁴⁰Ca and two levels in ⁴⁰Ar, is complete since these are the only levels in the daughter nuclides below the respective decay energies.

In principle, the 1460-keV γ ray could be used for energy calibration. However, in a Ge semiconductor detector the apparent γ -ray energy depends on the source-detector configuration and 40 K sources usually consist of a large volume of material, so this E γ is usually not useful. This also means that in most cases the uncertainty in the observed energy is much larger than that given here.

⁴⁰Ar Levels

E(level)	J^{π}	T _{1/2}	(Comment	s	ALL	weis				
0 1460.851 <i>6</i>	0+ 2+	STABLE	E J	J π : from Adopted Levels.							
E_{γ}		\mathbf{E}_{i}^{level}	J_i^π	E_{f}^{level}	J_f^{π}	$\frac{\gamma(^{40}A)}{I_{\gamma}^{\dagger}}$. <u>r)</u> Mult.	α	Comments		
1460.822	6	1460.851	2+	0	0+	10.66 13	E2	2.95×10 ⁻⁵ 9	E _γ : evaluator scaled down the value of 1460.830 5 (1979He13) by 5.8 ppm so that it corresponds to the energy scale of 2000He14. Others: 1460.75 6 (1967Ki10), 1460.95 7 (1970Ja15). I _γ : Iγ(1460)=I(ε ,1460)/(1+ α +IPFC)=10.66 <i>13</i> /1.000102 5. α : α (K)=2.65×10 ⁻⁵ 8 and α (L)=2.22×10 ⁻⁶ 7 interpolated from tables of 1976Ba63 and $\alpha = \alpha$ (K)+1.33*LC. Internal-pair-formation coefficient is IPFC=7.3×10 ⁻⁵ 5, interpolated from tables of 1979Sc31.		

[†] For absolute intensity per 100 decays, multiply by 1.000 *12*.
ε, β^+ radiatons									
Eε	E(level)	Iε	Log ft	$I(\varepsilon + \beta^+)$	Comments				
(43.84)	1460.851	10.66 13	11.56 <i>1</i>	10.66 13	εK=0.763 2. CL=0.209 1. εM+=0.0274 2.				
(1504.69)	0	0.20 10	21.35	0.20 10	av E β =238.2 3. ε K=0.8795 21. CL=0.08623 21. ε M+=0.01264 3. I ε : from β^+/β^- =1.12×10 ⁻⁵ 14 (1973EnVA), I(β^+)=0.00100 13. The evaluator has estimated the ε/β^+ ratio is 200 100. log ft: from private communication from R. B. Firestone: see also 1970Wa11.				

Decay Scheme

Intensities: $I_{(\gamma+ce)}$ per 100 parent decays

26 Mg(16 O,2p γ), 27 Al(18 O,p $\alpha\gamma$) 1977Eg01,1975Wa23

1977Eg01: E(¹⁶O)=34 MeV. Measured γ , $\gamma(\theta)$, $\gamma(\text{lin pol})$. 1975Wa23: E(¹⁸O)=35 MeV. Measured γ , $\gamma(\theta)$, lifetime.

			40 Ar Levels
E(level)	$J^{\pi\dagger}$	T _{1/2}	Comments
0	0+		
1460.81 4	2+		
2892.60 11	4+	2.9 ps 14	$T_{1/2}$: from recoil-distance method (1975Wa23).
3464.48 13	6+		,

[†] From Adopted Levels.

A2, A4 and polarization coefficients are from 1977Eg01. $\underline{\gamma(^{40}Ar)}$

\mathbf{E}_{i}^{level}	\mathbf{J}_i^{π}	\mathbf{E}_{f}^{level}	J_f^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	Mult.	Comments
1460.81	2+	0	0+	1460.78 4	108 2	E2	$A_2 = +0.230 \ 20, \ A_4 = -0.100 \ 20.$
2892.60	4+	1460.81	2+	1431.76 <i>10</i>	70 2	E2	POL=+0.30 <i>11</i> . A ₂ =+0.290 <i>20</i> A ₄ =-0.13 <i>3</i>
3464.48	6+	2892.60	4+	571.88 8	41 2	E2	POL=+0.40 <i>11</i> . A ₂ =+0.40 <i>3</i> , A ₄ =-0.10 <i>3</i> . POL=+0.40
							20.

[†] From 1975Wa23, the values are either from ${}^{27}\text{Al}({}^{18}\text{O},\text{p}\alpha\gamma)$ or from ${}^{37}\text{Cl}(\alpha,\text{p}\gamma)$. [‡] From 1977Eg01.

			36 S(α	(γ,γ) :resonances	1988Cs02,1986Jo09
Includes 1988Cs0 1994An (Jπ=	s ³⁶ S(α,α):)2, 1986Jo 39: ³⁶ S(α, =8+).	resonances in 09: E=2.35-3.5 ,α) E=12.56-1	⁴⁰ Ar from 1 0 MeV. Mea 5 MeV. Mea	994An39. sured E γ , I γ , $\gamma(\theta)$, lifeti sured $\sigma(\theta)$. Deduced re	mes by DSA. esonances in ⁴⁰ Ar at E α =13320 (J π =7-) and E α =14120
.	- *		0	40 Ar Leve	<u>ls</u>
E(level)	J^{n}	T or 1 [#]	$E\alpha(lab)^{\alpha}$	$(2J+1)\Gamma_{\alpha}\Gamma_{\gamma}/\Gamma(eV)^{\otimes}$	Comments
0	0+				
1461	2+				
2121	0+	0.50 0			$T_{\rm T}$ ($T_{\rm T}$) 2010 1.2500
2524	2+	0.50 ps 8			$I_{1/2}$: average of measurements at $E(\alpha)=3210$ and 3500.
2893	$\frac{4+}{2+}$	62 fs 12			T. α : measured at $F(\alpha) = 3210$
3208	$2\pm$	62 fs 12			$T_{1/2}$. measured at $E(\alpha)=3210$.
3681	2+ 3-	02 18 12			$1_{1/2}$ incastice at $E(\alpha)=5210$.
3919	$\frac{3^{-}}{2^{+}}$				
4041					
4082	3-				
4301	(1,3)-				
4324	2+	15 fs 6			$T_{1/2}$: average of measurements at $E(\alpha)=3210$ and 3500.
4473	1				
4602	1	73 fs 12	2252	0.10.5	$T_{1/2}$ measured at E(α)=3210.
8919 3]- 1	0.72 .16	2353	0.10 5	$\Gamma_{\alpha}/\Gamma_{\gamma} \le 0.11, \ \gamma_{\gamma} \ge 0.33 \text{ eV} (1988 \ \text{Cs}02).$
9127 5	1-	0.72 ev 10	2384	0.18 5	$1_{\alpha}/1_{\gamma} = 0.102, 1_{\alpha} = 0.07 \text{ ev} 2, 1_{\gamma} = 0.05 \text{ ev} 10, 1_{\gamma} = 0.05 \text{ ev}$ 17 (1988Cs02)
9138 6	(1-,2+)		2597	0.2 1	17 (19666362).
9147 5	1-		2607	0.2 1	
9178 <i>3</i>	1-		2641	0.2 1	
9197 6	(1-,2+)		2662	0.2 1	
9216 4	1-		2683	0.030 15	
9234 4	1- 1		2703	0.30 15	
9240 0	(1-2+)		2710	0.10 5	
9273 6	1-		2747	0.030 15	
9287 4			2762	0.30 15	
9296 5	(1-,2+)		2772	0.30 15	
9314 4	(1-,2+)		2792	0.10 5	
9330 4	1-		2810	0.10 5	
9339 4]- 1	11 ov 2	2820	0.30 15	$\Gamma / \Gamma = 0.62 17 \Gamma = 0.42 \text{ eV} 21 \Gamma = 0.60 \text{ eV} 22 \Gamma = 0.60$
9555 5	1-	1.1 ev 5	2030	0.8 1	$\Gamma_{\alpha}/\Gamma_{\gamma}=0.05 T/, \Gamma_{\alpha}=0.45 \text{ eV } 21, \Gamma_{\gamma}=0.09 \text{ eV } 25, \Gamma_{\gamma}0=0.00$ eV 21 (1988Cs02)
9373 4			2858	0.30 15	ev 21 (1960e362).
9408 4	1-		2897	0.5 1	
9417 4	1-	4.0 eV 20	2907	0.8 1	$\Gamma_{\alpha}/\Gamma_{\gamma}=0.07$ 3, $\Gamma_{\alpha}=0.10$ eV 5, $\Gamma_{\gamma}=3.9$ eV 20, $\Gamma_{\gamma0}=1.4$ eV 7 (1988Cs02).
9425 5	(1-,2+)		2916	0.10 5	
9433 3	(1-,2+)		2925	0.4 2	
9430 3 9472 <i>4</i>	(1, 2+)		2943	0.92	
9485.5	1-		2982	0.2 1	
9491	-		2989	•	
9504.8 14	1-	8.2 eV 18	3004.4	3.3 4	$\Gamma_{\alpha}/\Gamma_{\gamma}=0.19$ 4, $\Gamma_{\alpha}=1.3$ eV 5, $\Gamma_{\gamma}=6.9$ eV 17, $\Gamma_{\gamma 0}=6.2$ eV 16 (1988Cs02).
9527 4			3029	0.7 3	
9565 4	1-		3071	0.30 15	
9581 <i>3</i>	1-		3089	4.6 /	
9380 0 9596 1	(1-,2+)		3093 3106	0.94	
9608 5			3119	0.6 3	

E(level) [†]	$J^{\pi \ddagger}$	T or $\Gamma^{\#}$	$E\alpha(lab)^{\&}$	$(2J+1)\Gamma_{\alpha}\Gamma_{\gamma}/\Gamma (eV)^{@}$	Comments
9618 <i>3</i>	1-		3130	2.5 4	
9656 4	1-		3172	0.30 15	
9669 4	1-		3187	0.6 3	
9687 <i>3</i>	(1-,2+)		3207	2.4 7	Transition to 4041 level is not seen.
9694 5	(1-,2+)		3215	1.5 8	
9736 <i>3</i>	1-		3262	1.3 2	No 4785 γ is identified.
9759 4	1(-)		3287	0.10 5	$\Gamma_{\alpha}/\Gamma_{\gamma} \leq 0.07, \ \Gamma_{\gamma} \geq 0.53 \text{ eV}.$
9769 4	(1-,2+)		3298	0.10 5	
9787 4	1-		3318	0.8 4	
9813 <i>3</i>	1-		3347	1.5 8	
9825 <i>3</i>	1-		3360	1.9 2	
9849 <i>3</i>	1-	22 eV 6	3387	1.9 2	E(level): doublet: 9849+9852.
					$\Gamma_{\alpha}/\Gamma_{\gamma}=0.03 \ I, \ \Gamma_{\alpha}=0.65 \ \text{eV} \ 29, \ \Gamma_{\gamma}=22 \ \text{eV} \ 6, \ \Gamma_{\gamma 0}=10 \ \text{eV} \ 3$ (1988Cs02).
9852 <i>5</i>			3391	0.7 3	
9866 4			3406	0.2 1	
9881 4	1-		3423	0.10 5	
9893 4	1-		3436	0.2 1	
9912 5	(1-,2+)		3457	0.2 1	
9944 <i>3</i>	1-		3493	2.8 4	
9954 <i>3</i>	1(-)	≥9.6 eV	3503	5.5 7	$\Gamma_{\alpha}/\Gamma_{\gamma}=2.9 \ 10, \ \Gamma_{\alpha}\geq7.1 \ \text{eV}, \ \Gamma_{\gamma}\geq2.5 \ \text{eV}, \ \Gamma_{\gamma0}\geq1.7 \ \text{eV}$ (1988Cs02).

⁴⁰Ar Levels (continued)

[†] Rounded-off values from Adopted Levels up to 4602. The excitation energies of resonances are deduced from $E\alpha(lab)$. Excitation energy= $E\alpha(c.m.)+S(\alpha)(^{40}Ar)$, where $S(\alpha)=6800.74$ 19 (2003Au03).

[‡] Most assignments above 8 MeV are based on $\gamma(\theta)$ measurements; below this energy the assignments are from ⁴ Most assignments above of the value based on γ(v) measurements above on γ(v) measuremen

γ (⁴⁰ Ar)									
\mathbf{E}_{i}^{level}	\mathbf{J}_i^{π}	\mathbf{E}_{f}^{level}	$\mathbf{J}_f^{\boldsymbol{\pi}}$	$E\gamma^{\dagger}$	I_{γ}^{\ddagger}				
1461	2+	0	0+	1461					
2121	0+	1461	2+	660					
2524	2+	1461	2+	1063					
		0	0 +	2524					
2893	4+	1461	2+	1432					
3208	2+	1461	2+	1747					
3511	2+	1461	2+	2050					
3681	3-	1461	2+	2220					
3919	2+	0	0 +	3919					
4041		2524	2+	1517	63 10 ^e				
		1461	2+	2580	37 10 ^e				
4082	3-	1461	2+	2621					
4301	(1,3)-	1461	2+	2840					
4324	2+	1461	2+	2863	30 6				
		0	0 +	4324	70 6				
4473	1	0	0 +	4473					
4602		2524	2+	2078					
9127	1-	0	0+	9127	100				
9355	1-	4473	1	4882 ^f					
		4301	(1,3)-	5054	6				
		3919	2+	5436	7				
		0	0+	9355	87				
9408	1-			5331 ^{gd}	19^{gd}				
				5494 ^{gd}	14^{gd}				

(AI) (continueu)	$\gamma(^{40}\text{Ar})$	(continued)
-------------------	--------------------------	-------------

\mathbf{E}_{i}^{level}	\mathbf{J}_i^{π}	\mathbf{E}_{f}^{level}	J_f^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}
				5902 ^{gd}	18^{gd}
				6889 ^{g d}	3^{gd}
				7952 ^{gd}	11^{gd}
				9413 ^{gd}	35 ^{gd}
9417	1-			5331 ^{gd}	19^{gd}
				5494 ^{gd}	14^{gd}
				5902 ^{gd}	18^{gd}
				6889 ^{g d}	3^{gd}
				7952 ^{gd}	11^{gd}
		0	0 +	9413 ^{gd}	35 ^{gd}
9450	1-	3511	2+	5939	8
		3208	2+	6242	8
		2893	4+	6557	4
		2524	2+	6926	13
		2121	0+	7329	12
		1461	2+	7989	35
0504.9	1	0	0+	9450 5596	24
9304.8	1-	2121	2+0+	5580 7384	3
		1461	2^+	8044	6
		0	0^{+}	9505	89
9581	1-	3919	2+	5664 ^{gc}	5^{gc}
		2893	4+	6690 ^{g c}	5 ^{gc}
		2524	2+	7059 ^g c	11 ^{gc}
		2121	0+	7462 ^g c	25^{gc}
		1461	2+	8122 ^g c	18 ^{gc}
0596	(1.2.)	2010	2.	9583 ^{gc}	41 ^g
9586	(1-,2+)	3919	2+	5600gc	Jec 5gc
		2695	$\frac{4+}{2+}$	7050gc	118 ^c
		2121	0^{2+}	7462^{gc}	$25g^{c}$
		1461	2+	8122 ^{gc}	18^{gc}
		0	0+	9583 ^{gc}	41 ^{gc}
9618	1-	3919	2+	5699	5
		3681	3-	5937	2
		3511	2+	6107	2
		3208	2+	6410	4
		2893	4+	0725	3 7
		2121	$^{2+}_{0+}$	7094 7497	3
		1461	2+	8157	46
		0	0+	9618	31
9687	(1-,2+)			5088 ^{gb}	14^{gb}
				5366 ^{g b}	8^{gb}
				5771 ^{gb}	6^{gb}
				6179 ^{gb}	6^{gb}
				6482 ^{gb}	5^{gb}
				7166 ^{gb}	54 ^{<i>gb</i>}
				8229 ^{g b}	4^{gb}
				9690 ^{g b}	3^{gb}
9694	(1-,2+)			5088 ^{g b}	14^{gb}
				5366 ^{g b}	8^{gb}
				5771 ^{gb}	6^{gb}
				6179 ^{g b}	6^{gb}
				6482 ^{g b}	5^{gb}
				7166 ^{gb}	54 ^{gb}

\mathbf{E}_{i}^{level}	\mathbf{J}_i^{π}	\mathbf{E}_{f}^{level}	\mathbf{J}_{f}^{π}	$E_{\gamma}{}^{\dagger}$	I_{γ}^{\ddagger}
				8229 ^{gb}	4^{gb}
		0	0+	9690 ^{g b}	3 ^{gb}
9736	1-	4602		5134	5
		3919	2+	5817	13
		3208	2+	6528	11
		2524	2+	7212	5
		2121	0 +	7615	7
		1461	2+	8275	11
		0	0+	9736	48
9825	1-	3919	2+	5906	10
		3681	3-	6144	9
		3511	2+	6314	2
		3208	2+	6617	13
		2524	2+	7301	17
		2121	0+	7704	7
		1461	2+	8364	25
		0	0+	9825	17
9849	1-	2893	4+	6957 ^{ga}	9^{ga}
		2524	2+	7326 ^{g a}	28 ^{ga}
		1461	2+	8389 ^{g a}	25 ^{ga}
		0	0+	9850 ^{g a}	47 ^{ga}
9852		2893	4+	6957 ^{ga}	9^{ga}
		2524	2+	7326 ^{g a}	28 ^{ga}
		1461	2+	8389 ^{g a}	25 ^{ga}
		0	0+	9850 ^{g a}	47 ^{ga}
9944	1-	4473	1	5471	4
		3919	2+	6025	5
		2524	2+	7420	23
		2121	0+	7823	9
		1461	2+	8483	25
		0	0+	9944	38
9954	1(-)	4324	2+	5630	4
		4041		5913	2
		3919	2+	6035	2
		2524	2+	7430	9
		1461	2+	8493	12
		0	0+	9954	71

 γ ⁽⁴⁰Ar) (continued)

[†] Level-energy differences. For levels below 4602, $E\gamma$'s are based on adopted gammas.

[‡] From 1988Cs02. Uncertainties are 10% for strong lines and up to 50% for weakest lines. ^{*a*} γ decays from 9849 and 9852 are unresolved. Quoted E γ corresponds to the average deduced from the decay of two levels. $^{b}\gamma$ decays from 9687 and 9694 are unresolved. Quoted E γ corresponds to the average deduced from the decay of two

levels. $^{c} \gamma$ decays from 9581 and 9586 are unresolved. Quoted E γ corresponds to the average deduced from the decay of two

levels. ^d γ decays from 9408 and 9417 are unresolved. Quoted E γ corresponds to the average deduced from the decay of two

levels. ^e Measured at 3503 resonance.

f Weak γ . ^g Multiply placed with undivided intensity.

³⁷Cl(α,**p**γ) 1983Bi08

1983Bi08: E=12, 13 MeV. Measured γ , p γ coin, γ (lin pol), lifetimes by DSA. Others:. 1975Wa23: E=12 MeV. Measured γ , lifetime by recoil-distance method. Data for 1461, 2893 and 3464 levels. 1975Po13: E=10.6 MeV. Measured γ , p γ (t). Lifetime of 3464 level. 1971Ja15: E=6.25, 7.00, 8.00 MeV. Measured γ , $\gamma(\theta)$, lifetimes by DSA. Data for 1461, 2121, 2525, 2893, 3208 and 3515

levels. 1970Cu02: E=8.40 MeV. Measured E γ , lifetime by DSA for 1461 level.

.

⁴⁰Ar Levels

Nuclear Level Sequences

A Member of $f_{7/2}^2$ yrast sequence.

B 0+ deformed band.

Seq.	E(level)	\mathbf{J}^{n+1}	$T_{1/2}^{+}$	Comments
A	0	0+		
A	1460.81 4	2+	1.39 ps 28	$T_{1/2}$: 0.83 ps 26 (1971Ja15), 1.7 ps +125-9 (1970Cu02).
В	2121 7	0+	>2.8 ps	$T_{1/2}$: 6.2 ps +90-28 (1971Ja15).
B	2524 1	2+	0.27 ps 4	$T_{1/2}$: 0.19 ps 5 (1971Ia15)
1	2802 60 11	4	22 ps 6	$T_{1/2}$, others: <12 ps (1075Wa23), 2.8 ps + 56 14 (1071Ia15)
A	2092.00 11	4+	2.2 ps 0	$1_{1/2}$. others. <12 ps (1975 wa25), 2.8 ps +50-14 (19713a15).
۸	3208 I 3464 48 13	2+ 61	20 18 14 0.603 ps 21	T from direct timing (1075Po13) Others: 0.645 ns. 35 from
A	5404.46 15	0+	0.093 118 21	$\Gamma_{1/2}$. From direct timing (1975/015). Others. 0.045 its 55 from recoil-distance method (1975/Wa23), >2.8 ps (1983Bi08).
	3511 <i>1</i>	1,2+	49 fs <i>14</i>	$J\pi$: 2+ in Adopted Levels.
В	3515 <i>1</i>	4+	0.139 ps 28	J π : 4- and 3 are not allowed by RUL for implied multipolarities.
	3681 <i>1</i>	3-	0.132 ps 28	
	3919 <i>1</i>	2+	0.28 ps 3	
	4041 1			
	4082 1	2-,3-	40 fs 14	$J\pi$: 3- in Adopted Levels.
	4226 1	4-	>2.8 ps	J π : 3 is not allowed by RUL for implied multipolarities.
	4229 1		0.166 ps 28	
	4300 1	1-,2-,3-	58 fs 14	$J\pi$: (1,3)- in Adopted Levels.
	4328 1	1,2+	18 fs 7	$J\pi$: 2+ in Adopted Levels.
	4420 1			
	4427 1	3+,4,5+	125 fs 21	$J\pi$: 3-, 5- not allowed by RUL for implied multipolarities; (4+) in Adopted Levels.
	4473 <i>1</i>	(1)		J π : 1,2+ from γ to 0+; J=1 is favored by a similar state in ⁴² Ca.
	4494 1	5-	0.50 ps 7	
	4562 1	1-,2-,3-		J π : (1,3)- in Adopted Levels.
	4578 <i>1</i>	2+,3	37 fs 14	$J\pi$: (2+,3-) in Adopted Levels.
	4602 1	(1,2,3)-	33 fs 14	$J\pi$: (0+:4+) in Adopted Levels.
	4674 <i>1</i>		66 fs 17	
	4769 1	(1,2+)		$J\pi$: 1- in Adopted Levels.
	4794 1	3+,4+	52 fs 14	J π : π =- is rejected by RUL; 4+ in Adopted Levels.
	4858 1	5-	37 fs 10	
	4929 1			
В	4959 <i>1</i>	(6+)	0.10 ps 4	$J\pi$: 4+,5+ are less likely, but not ruled out.
	4972 <i>1</i>			
	4991 <i>1</i>	4(-)	2.1 ps 7	
	5115 2			
	5143 2		<10 fs	
	5166 2			
	5245 2			
	5269 2			
	5293 <i>2</i>			
	5310 2			
	5350 2			
	5378 2			
			Continued	on next page (footnotes at end of table)

Seq.	E(level)	$\mathrm{J}^{\pi\dagger}$	$T_{1/2}^{\ddagger}$	Comments
	5508 2		_	
	5544 2			
	5559 2			
	5608 2			
	5611 2			
	5630 2			
	5654 2			
	5662 2			
	5675 2			
	5766 2			
	5818 2			
	5885 2			
	5912 2			
	5931 2			
	5973 2	(6-)		$J\pi$: no assignment in Adopted Levels.
	6013 2	(7-)		$J\pi$: (4+:7-) in Adopted Levels.
	6099 <i>2</i>			
	6104 2			
	6138 2			
	6158 2			
	6185 2			
	6203 2			
	6270 2			
	6305 2			
	6356 2			12
В	6806 <i>2</i>	(8+)		$J\pi$: from analog in ⁴² Ca (1983Bi08).
	6979 2	(8-)		J π : from analog in ⁴² Ca (1983Bi08).

⁴⁰Ar Levels (continued)

[†] As proposed by 1983Bi06 based on $\gamma(\theta)$ and $\gamma(\ln \text{ pol})$; the assignments for low-lying levels are mostly from Adopted Levels. [‡] From DSA (1983Bi08), unless otherwise stated.

					γ (⁴⁰ Ar)			
\mathbf{E}_{i}^{level}	\mathbf{J}_i^{π}	\mathbf{E}_{f}^{level}	J_f^π	$E_{\gamma}{}^{\dagger}$	I_{γ}	Mult.	δ	Comments
1460.81	2+	0	0+	1460.78 4 ^a	100			
2121	0+	1460.81	2+	660	100			
2524	2+	1460.81	2+	1063	57 <i>1</i>			
		0	0+	2524	43 1			I_{γ} :
2892.60	4+	1460.81	2+	1431.76 <i>10^a</i>	100			$1\gamma(2524)/1\gamma(1063)=38/62.$
3208	2+	1460.81	2+	1747	90 1			
		0	0 +	3208	10 <i>I</i>			
3464.48	6+	2892.60	4+	571.88 8 ^a	100			
3511	1,2+	2524	2+	987	51			
		1460.81	2+	2050	81 <i>3</i>			
		0	0 +	3511	14 2			
3515	4+	2892.60	4+	622	31 2	M1(+E2)	-0.07 10	$A_2 = +0.45 \ 3, A_4 = -0.04 \ 4.$ δ : -0.4 to -1.3 for I=3
		2524	2+	991	95			0. 0.1 10 1.5 101 0-5.
		1460.81	2+	2054	60 2			
3681	3-	2892.60	4+	788	10 <i>I</i>			
		2524	2+	1157	4.0 5			
		1460.81	2+	2220	86 2			
3919	2+	2524	2+	1395	13 2			
		2121	0+	1798	92			
		1460.81	2+	2458	18 2			

					γ ⁽⁴⁰ Ar) (contin	ued)		
\mathbf{E}_{i}^{level}	\mathbf{J}_i^{π}	\mathbf{E}_{f}^{level}	${ m J}_f^{m \pi}$	$E_{\gamma}{}^{\dagger}$	I_{γ}	Mult.	δ	Comments
		0	0+	3919	60 4			
4041		2524	2+	1517	100			
4082	2-,3-	1460.81	2+	2621	100			
4226	4-	3681	3-	545	47 2	D+Q	-10 +3-9	$A_2 = -0.10 \ 3, \ A_4 = -0.09 \ 3.$
		2892.60	4+	1333	53 2	D(+Q)	+0.6 +4-8	$A_2 = +0.34 4, A_4 = +0.08 4.$ $\delta: -1.7 + 13-4$ for I=3
4229		2524	2+	1705	77 3			0. 1.7 +15 7 101 5-5.
		1460.81	2+	2768	23 3			
4300	1-,2-,3-	1460.81	2+	2839	100			
4328	1,2+	1460.81	2+	2867	71 5			
		0	0+	4328	29 5			
4420		3208	2+	1212	92			
		2524	2+	1896	8 2			
		1460.81	2+	2959	83 4			
4427	3+,4,5+	2892.60	4+	1534	43 5	D+Q		$A_2 = +0.41 \ 4$, $A_4 = +0.03 \ 4$. δ : -0.34 to -1.8 for J=3; -0.2 to +1.0 for J=4; +0.32
		1460.81	2_{\perp}	2066	57 5			to $+0.77$ for J=5.
1173	(1)	0	2+ 0+	4473	100			
4475	(1) 5-	4226	0+ 4-	268	183			
4474	5-	3515		070	0.1			
		3464.48	6+	1030	28 2	D(+Q)	+0.06 +7-10	A ₂ =-0.17 4, A ₄ =-0.03 4. δ : <-14 is not allowed by
		2892.60	4+	1601	61 3	E1(+M2)	0.00 +6-9	RUL. A ₂ =-0.24 <i>3</i> , A ₄ =-0.03 <i>3</i> . POL=+0.58 <i>15</i> .
4562	1-,2-,3-	4082	2-,3-	480	91			
		3919	2+	643	42 4			
		1460.81	2+	3101	49 4			
4578	2+,3	3511	1,2+	1067	35 4			
		3208	2+	1370	11 2			
		2892.60	4+	1685	38 4			A_2 =-0.21 6, A_4 =+0.08 6. δ : -0.05 to +0.72 for J=3.
		1460.81	2+	3117	11 2			
4602	(1,2,3)-	4328	1,2+	274				Could have escaped detection due to low energy.
		2524	2+	2078	90 2			
		1460.81	2+	3141	10 2			
4674		1460.81	2+	3213	100			
4769	(1,2+)	0	0+	4769	100			
4794	3+,4+	2892.60	4+	1901	50 5	M1+E2		$\delta: 0.22 + 13-5 \text{ or } +1.60 \ 15$
								for J=4; -1.0 <i>6</i> for J=3 A ₂ =+0.32 <i>4</i> A ₄ =-0.07 <i>5</i> .
1050	-	1460.81	2+	3333	50 5			
4858	5-	4494	5-	364	10.0 5			
		3464.48	6+	1394	24 I		0.00 0.10	
		2892.60	4+	1965	66 <i>2</i>	E1(+M2)	-0.09 +8-12	$A_2 = -0.43 \ 4, \ A_4 = -0.04 \ 3,$ POI $-\pm 0.71 \ 26$
4929		3681	3-	1248	50 4			· OL-+0./1 20.
		2524	2+	2405	22 3			
		1460.81	2+	3468	28 <i>3</i>			
4959	(6+)	3515	4+	1444	64 <i>3</i>	E2		A ₂ =+0.30 3, A ₄ =-0.07 4.
		2892.60	4+	2066	36 <i>3</i>	E2		A ₂ =+0.29 5, A ₄ =-0.07 6.
4972		2892.60	4+	2079	59 4			
		1460.81	2+	3511	41 4			
4991	4(-)	4226	4-	765	83 2	D+Q		$A_2 = +0.40 \ 3, A_4 = +0.04 \ 5,$ POL>+0.65.

				γ	(⁴⁰ Ar) (conti	nued)		
\mathbf{E}_{i}^{level}	J_i^π	\mathbf{E}_{f}^{level}	J_f^π	${\rm E}_{\gamma}^{\dagger}$	I_{γ}	Mult.	δ	Comments
								$\delta(Q/D)$ =-0.13 to +0.77 or
		4082	23-	909	91			-0.72 to -1.5.
		3681	3-	1310	8 1			
5115		3464.48	6+	1651	100			
5143		3515	4+	1628	17 2			
		3464.48	6+	1679	83 2			
5166		3515	4+	1651	70 <i>3</i>			
		1460.81	2+	3705	30 <i>3</i>			
5245		1460.81	2+	3784	100			
5269		3681	3-	1588	100			
5293		1460.81	2+	3832	100			
5310		4494)-))	816	11 <i>I</i> 41 2			
		4082	2-,3-	1228	41 3			
5350		2802.60	5- 4 -	2457	48.5			
5378		2692.00	++ 1⊥	1863	21.2			
5570		3464 48	++ 6+	1914	21 2 28 2			
		2892.60	4+	2485	51 <i>4</i>			
5508		3515	4+	1993	100			
5544		1460.81	2+	4083	100			
5559		3515	4+	2044	26 2			
		3464.48	6+	2095	28 2			
		2892.60	4+	2666	46 4			
5608		1460.81	2+	4147	100			
5611		3464.48	6+	2147	100			
5630		4427	3+,4,5+	1203	100			
5654		2524	2+	3130	100			
5662		2892.60	4+	2769	100			
5675		3681	3-	1994	100			
5/66		3208	2+	2558	100			
5005		2892.60	4+	2925	100 52 4			
2002		2892.00	4+ 2+	2992	35 4 17 1			
5012		1400.01	2^+	4424	4/4			
5712		3208	2-,5- 2+	2704	50.5			
5931		2892.60	$\frac{2}{4+}$	3038	72.4			
0701		1460.81	2+	4470	28.4			
5973	(6-)	3464.48	6+	2509	100			
6013	(7-)	4494	5-	1519	50 <i>3</i>			
		3464.48	6+	2549	50 <i>3</i>			
6099		1460.81	2+	4638	75 5			
		0	0+	6099	25 5			
6104		2892.60	4+	3211	100			
6138		3464.48	6+	2674	100			
6158		3464.48	6+	2694	87 2			
6105		2892.60	4+	3265	13 2			
6202		4494	5- 4 -	1091	100			
0203		2892.00	4+ 6+	2806	100			
0270 6305		3404.48 3515	0+ 4 +	2000 2700	100			
0303		3464 49	4+ 6+	2790	00 J 40 5			
6356		1858	5-	1498	+0 J 67 5			
0550		3464 48	5- 6+	2892	33.5			
6806	(8+)	4959	(6+)	1847	100			
6979	(8-)	5973	(6-)	1006	>80			

[†] From level-energy differences unless otherwise stated. Measured E γ values are not available. ^{*a*} From 1975Wa23, the values are either from ²⁷Al(¹⁸O,p $\alpha\gamma$) or from (α ,p γ).

³⁸Ar(t,p) 1975Fl08

1975Fl08, 1973Ca13: E=20.0 MeV. Measured $\sigma(\theta)$, FWHM=35 keV. Uncertainty in absolute cross sections is 15%.

							-	⁴⁰ Ar Levels	<u>s</u>						
			evel	$d\sigma/d\Omega$	(max)		θ	Le	vel	$d\sigma/d\Omega$	(max)		θ		
			0	0.28		20.	0	5298		0.086		12.5	5		
		146	51	0.54		12.	5	5393		0.040		35.0)		
		212	21	0.014	:	12.	5	5454		0.074		12.5	5		
		252	24	0.006	:	12.	5	5500		0.040		20.0)		
		289	2	0.33	-	20.	0	5671		0.056		20.0)		
		320)7	0.32		12.	5	5835		0.18		20.0)		
		346	8	0.068	4	42.	5	5883		0.42		12.5	5		
		350)/	0.077		12.	5	6140		0.032		27.5	-		
		300	91 96	0.18		12. 12	5 5	6470		0.092		12.0)		
		405	.0 33	0.10		12. 27	5	6670		0.10		35 0)		
		409	2	weak		21.	0	6760		0.20		20.0	,)		
		431	.0	0.17	:	12.	5	6835		0.077		12.5	5		
		443	0	0.39	:	20.	0	7070		0.015		35.0)		
		449	5	0.021	-	20.	0	7160		0.061		12.5	5		
		466	5	0.015	:	27.	5	7300		0.089		12.5	5		
		479	8	0.071	:	12.	5	7495		0.17		12.5	5		
		487	0	0.024		20.	0	7640		0.13		12.5	5		
		496	8	0.012	:	27.	5	7730		0.12		12.5	5		
		511	.7	0.022	-	20.	0	7890		0.088		12.5	5		
		519	91	0.024	:	20.	0	7980		0.085		12.5)		
E(level) [†]	Iπ	L [†]	Enhanc	ement fa	$\cot (\epsilon)^{\frac{1}{2}}$	ţ.	Con	nments							
		<u> </u>	2.5			-		1 1 1			0.72	1 /	(10720	12)	
0		0	3.3 2				Sum	imed absolu	ite cro	oss sectio	on=0.73	md/si	r (1975Ca	15).	
1461 <i>5</i> 2121 <i>5</i>		2	$\approx 0.1^{\&}$				L: o Sum	$\sigma(\theta)$ is unchumed absolu	naracto ite cro	eristic of oss sectio	L=0 di n=0.02	stribut mb/sr	tion. : (1973Ca	.13).	
2524 5		(2)	0.03												
2892 5		(3,4)	1.5#												
3207 5		2	1												
3468 5		(6)	0.4												
3507 5		(2)	0.05												
3681 5		3,4	0.9												
3926 5		2	0.8												
4053 5			0.06#				***	1							
4092 10		2	07				wea	ik group.	mondo	to 1221	2 100		+ 1201 :	Adomtad	Lavala
4310 10		2	0.7				E(le	ever): corres	ponds	5 10 4524	, 2+ iev	ei, no	t 4501 III	Adopted	Levels.
4495 10		(5)	0.02												
4665 10		(\mathbf{J})	0.02												
4798 10		3,4													
4870 10		3,4	$0.2^{@}$												
4968 10		<i>,</i>													
5117 <i>15</i>		(5)	0.02												
5191 15															
5298 15		2	0.4												
5393 15			@												
5454 15		3,4	0.05@												
5500 15		3,4	0.04												
5671 15		3,4	0.2#												
5835 15		3,4	1.3,0.6												
5883 15		2	2												
0140 13		(5)	0.03												

⁴⁰Ar Levels (continued)

E(level) [†]	J^{π}	L^{\dagger}	Enhancement factor $(\varepsilon)^{\ddagger}$	Comments
6305 15				
6470 15		(2)		
6670 15				
6760 15		3,4		
6835 15		3,4		
7070 15				
7160 15				
7300 15				
7495 15				
7640 15		2		
7730 15				
7890 15				
7980 15				
$\stackrel{\dagger}{}$ Free $\stackrel{\dagger}{}$ $\varepsilon =$	om 197 =(dσ/dΩ	75F108. 2)exp/21	8σ (DWUCK). Form factors	used were $f_{7/2}^2$ for most of the levels and $f_{7/2}d_{3/2}$ for some.
# Fo @ F	or L=4.			.,

[@] For L=3. & For L=0.

³⁸Ar(α ,²He) 1978Ja10

1978Ja10 (also 1978Ja22 and thesis by 1980StZO): E=65 MeV. Measured pp coin, $\sigma(\theta)$, tof. FWHM=300-600 keV.

⁴⁰Ar Levels

E(level)	J^{π}	Relative intensity at $\theta = 13^{\circ \dagger}$	Comments
0	$0+^{\ddagger}$	7	
1460 70	2+‡	15	
2890 70	4+‡	30	
3470 70	6+‡	100	
$8.2 \times 10^3 8$		60	E(level): broad peak, probably complex structure of many states.
$9.0 \times 10^3 I$		60	

 † Estimated intensity, read off the spectrum in figure 6b of 1978Ja10. ‡ From 1978Ja10, member of $f_{7/2}^2$ multiplet; same assignments as in Adopted Levels.

⁴⁰Ar(γ,γ'),(pol γ,γ') 1988Mo12,1986Wi08

1988Mo12: (γ, γ') E=8.5, 10.3, 11.8 MeV. Measured E γ , I γ , $\gamma(\theta)$. 1986Wi08: (pol γ, γ') E=17 MeV bremsstrahlung, measured E γ , asymmetry. A total of 14 transitions identified.

				⁴⁰ Ar Levels
$E(level)^{\dagger}$	$J^{\pi \ddagger}$	Γ@	$(2J+1)\Gamma_0^2/\Gamma (eV)^{\#}$	Comments
0	0+			
1461	2+			
4473 <i>3</i>	1		$0.21 \ 4^d$	
4768 <i>1^c</i>	1-a		2.46 17 ^d	
4901 3			0.05 2	
5110 3	(1,2+)		0.07 2	$J\pi$: no assignment in Adopted Levels.
5393 <i>3</i>	1 ^b		0.09 2	
5880 <i>3</i>	1^{b}		0.35 4	
5912 <i>3</i>	1		0.15 5	
6056 2^c	1&		1.24 19	
6102 <i>3</i>	1,2+		0.17 5	$\Gamma_0/\Gamma_\gamma=0.26.$
6340 2 ^c	$1^{\&b}$		$0.87 \ 10^d$	
6450 <i>3</i>	0.1		0.17 4	
6477 <i>3^c</i>	180		1.29 <i>16^d</i>	
6703 <i>3</i>	1		0.38 6	
7168 3	1		0.24 7	
7246 3	1		0.37 7	
7281 3	1		0.48 10	
7519 5	1		0.40 10	
7020 3	1		0.33 8	
77018 20	1 &		2.2.5	
7918 2°	1&		1.84 24	
7993 3° 8032 3	1.2		0.78 14	
8163.2°	1,2+ 1 a		5710	
8103 2 8101 30	1- 1&		2.7.10	
8303 3	1		2.2.2 1.1/1.70	
8552 3	1		1.14 19	
8585 3 ^c	1&		264	
8644 3	1		0.80.21	
8676 3	1.2+		1.8 7	
8884 <i>3^c</i>	1&		2.5 4	
8917.3	1 ^b	0.34 eV 14 ^e	0.81.27	
9128 3	1 ^b	0.71 eV 14	183	
9337 3	$1 2 \pm b$	0.71 0 7 17	0.76.18	
9356 3	1,2 1b	1.0 eV 3	0.96.24	$\Gamma_0/\Gamma=0.87$
0416 3	1 1b	3.4 oV 18	126	$10/1\gamma - 0.07$
9502 2 ^c	$\frac{1}{1(-)^{a}}$	79 eV 13	1.2.0	$\Gamma_0/\Gamma_0 = 0.89$
9582 <i>3</i>	$1^{(-)}$ 1^{b}	7.3 eV 21	0.99 25	E(level): doublet: 9580+9585.
0757 3	1 <i>b</i>	0.56 31.000	152	$1 \ 0/1 \ \gamma = (0.41).$
9/5/ 3	1° 1	$0.56 \text{ eV} 22^{2}$	1.5 5	
9840 <i>3</i> 9850 <i>2^c</i>	1^{-a}	21 eV 4	13.4 20	E(level): doublet: 9848+9851.
	, h	40		$\Gamma_0/\Gamma_\gamma=0.47.$
9950 <i>3</i>	10	10 eV 3	0.95 26	$1_0/1_{\gamma} = 0.71.$
10090 3	1		1.4 3	
10151 3	1		5.4 J	
101/9 2°	1.2		4.5 0	
10302 3	1,2+ 1		1.5 4	
10743 3	1		1.0 5	
10057 5	1		1./ 7	

[†] From 1988Mo12, unless otherwise stated.

[‡] From $\gamma(\theta)$ data of 1988Mo12, unless otherwise stated. For most levels, $\gamma(\theta)$ data agree with those expected for 0-1-0 cascade. # From 1988Mo12, J=spin of excited state. @ Deduced by 1988Mo12 from their $(2J+1)\Gamma_0^2/\Gamma$ values, and $S(\alpha,\gamma)=(2J+1)\Gamma_\alpha/\Gamma$ and Γ_0/Γ_γ from 1986Jo09.

- ^k 1986Wi08 give 1,2+.
 ^a Parity from polarization asymmetry from 1986Wi08.
 ^b 1- or 1(-) in Adopted Levels.
 ^c From average of 1988Mo12 and 1986Wi08.

- ^{*d*} For $\Gamma_0/\Gamma_{\gamma}=1$. ^{*e*} Lower limit using $\Gamma_0/\Gamma_{\gamma}=1$.

		γ(⁴⁰ Ar)		
\mathbf{E}_i^{level}	\mathbf{J}_i^{π}	\mathbf{E}_{f}^{level}	\mathbf{J}_f^{π}	Eγ	Mult.
1461	2+	0	0+	1461	
4473	1	0	0 +	4473 <i>3</i>	
4768	1-	0	0+	4768 1	
4901		0	0+	4901 <i>3</i>	
5110	(1,2+)	0	0 +	5110 <i>3</i>	
5393	1	0	0 +	5393 <i>3</i>	
5880	1	0	0+	5880 <i>3</i>	
5912	1	0	0+	5912 <i>3</i>	
6056	1	0	0+	6056 2	
6102	1,2+	1461	2+	4638 <i>3</i>	
		0	0+	6102 <i>3</i>	
6340	1	0	0 +	6339 2	
6450		0	0+	6450 <i>3</i>	
6477	1	0	0+	6477 <i>3</i>	
6703	1	0	0 +	6703 3 ^{ba}	
7168	1	0	0 +	7168 3	
7246	1	0	0+	7246 3	
7281	1	0	0+	7281 3	
7519	1	0	0+	7519 3	
7626	1			6168 <i>3</i>	
		0	0 +	7626 3	
7708	1	0	0+	7708 <i>3</i>	
7918	1	0	0 +	7918 2	
7993	1	0	0+	7993 <i>3</i>	
8032	1,2+	1461	2+	6570 <i>3</i>	
	,	0	0 +	8032 <i>3</i>	
8163	1-	1461	2+	6703 2^{b}	
		0	0+	8163 2	E1
8191	1	0	0+	8191 <i>3</i>	
8303	1	0	0+	8303 <i>3</i>	
8552	1	0	0 +	8552 <i>3</i>	
8585	1	0	0 +	8585 <i>3</i>	
8644	1	0	0 +	8644 <i>3</i>	
8676	1,2+	0	0+	8676 <i>3</i>	
8884	1	0	0+	8884 <i>3</i>	
8917	1	0	0 +	8917 <i>3</i>	
9128	1	0	0 +	9128 <i>3</i>	
9337	1,2+	0	0+	9337 <i>3</i>	
9356	1	0	0 +	9356 <i>3</i>	
9416	1	0	0 +	9416 <i>3</i>	
9502	1(-)	0	0 +	9502 2	
9582	1	0	0+	9582 <i>3</i>	
9757	1	0	0 +	9757 <i>3</i>	
9840	1	0	0+	9840 <i>3</i>	
9850	1-	0	0+	9850 2	
9950	1	0	0+	9950 <i>3</i>	
10090	1	0	0+	10090 <i>3</i>	
10151	1	0	0+	10151 <i>3</i>	

γ ⁽⁴⁰Ar) (continued)

\mathbf{E}_{i}^{level}	\mathbf{J}_i^{π}	\mathbf{E}_{f}^{level}	\mathbf{J}_f^{π}	Eγ	Mult.
10179	1	0	0 +	10179 2	
10362	1,2+	0	0 +	10362 <i>3</i>	
10745	1	0	0+	10745 <i>3</i>	
10857	1	0	0 +	10857 <i>3</i>	

^{*a*} In table I of 1988Mo12 6703 γ is shown to deexcite only the 8162 level, but in authors' table II, 6703 level is also given. ^b Multiply placed.

1977Fi09,1975GrYY 40 Ar(e,e')

Includes (e,e).

1977Fi09, 1976Fi12 (also thesis by 1976FiZW): (e,e') E=65-115 MeV. Measured $\sigma(\theta)$, deduced form factors, widths and rms radii. 1975GrYY: (e,e'). Measured σ , deduced levels and form factor. 1982Ot01: (e,e) E=116, 249 MeV. Measured $\sigma(\theta)$, deduced rms radii.

1975Ch41: (e,e') E=150-165 MeV. Measured $\sigma(E)$, deduced giant-resonance structure.

1974We02: (e,e) E=248 MeV. Measured $\sigma(\theta)$, deduced rms radii.

1971Sc09: (e,e) E=40-57 MeV. Measured $\sigma(\theta)$, deduced rms radii.

1971Gr27: (e,e) E=78-120 MeV. Measured $\sigma(\theta)$, deduced rms radii, form factors.

1963Go04: (e,e) E=41 MeV.

1963Ba19: (e,e').

1956He83: (e,e') E=187 MeV, $\sigma(\theta)$ data for g.s., 1460 and 2400 levels.

B(E2)'s are those deduced by 1977Fi09 using Tassie's model. 1977Fi09 also give values using Helm's model.

⁴⁰Ar Levels

E(level)	$\mathrm{J}^{\pi\dagger}$	T _{1/2} ‡	BEL (W.u.) ^{\ddagger}	Comments
0	0+			<r<sup>2>_{1/2}=3.393 fm <i>15</i> (1976Fi12), 3.41 fm <i>4</i> (1971Sc09), 3.47 fm <i>5</i></r<sup>
				(1971Gr27,1975GrYY), 3.48 fm 4 (1974We02).
1460	2+	1.12 ps 4	9.4 <i>3</i>	B(E2)=0.0382 <i>13</i> (1977Fi09).
2520	2+	194 fs 35	1.6 3	B(E2)=0.0063 11 (1977Fi09).
				T _{1/2} : 0.23 ps 4 (1956He83).
				$\beta_2 = 0.025 \ 5 \ (1956 \text{He}83).$
3210	2+	35 fs 7	0.72 10	B(E2)=0.0029 4 (1977Fi09).
				J π : 2+ is supported by $\sigma(\theta)$ data of 1977Fi09.
3510#				
3680	3-		13.2 15	B(E3)=0.0087 10 (1977Fi09).
3920#				

[†] From adopted level.

[‡] Deduced from B(E2)'s and adopted branching ratios.

From 1975GrYY only.

40 Ar(n,n' γ) 1965Ma41

1965Ma41 (also 1966Ma10): E=3-4.5 MeV. Measured $\gamma(\theta)$.

		AF Levels
E(level)	$J^{\pi\dagger}$	Comments
0	0+	
1450	2+	
2130	0+	
2530	2+	
3220	2+	E(level): 3208 in Adopted Levels.

40 A T

[†] From Adopted Levels.

A₂ values are read (by evaluators) from $\gamma(\theta)$ plots in $\frac{\gamma(^{40}\text{Ar})}{1965\text{Ma}41}$.

\mathbf{E}_{i}^{level}	\mathbf{J}_i^{π}	\mathbf{E}_{f}^{level}	\mathbf{J}_f^{π}	Eγ	Comments
1450	2+	0	0+	1450	A ₂ =+0.18 4.
2130	0 +	1450	2+	680	A ₂ =0.0 1.
2530	2+	1450	2+	1080	$A_2 = -0.07$ 7.
		0	0 +	2530	$A_2 = +0.33$ 7.
3220	2+	1450	2+	1770	$A_2 = +0.42 \ 4.$

⁴⁰Ar(p,p'),(pol p,p') 1988Bl04,1985De03,1961Ka26

Includes (p,p), (pol p,p).

- 1988Bl04: (p,p') E=0.8 GeV. Measured $\sigma(\theta)$. FWHM=140 keV.
- 1985De03: (p,p') E=29.6, 35.1 MeV. Measured $\sigma(\theta)$. FWHM=80-120 keV. Deduced BEL values.
- 1961Ka26: (p,p') E=8 MeV, 23 levels reported with precise energies.
- Others:.
- 1992Go18: (p,p) E=1.875-1.879 MeV. Measured yield.
- 1983Ba01: (p,p') E=1 GeV. Measured total σ .
- 1983Ok01: (pol p,p) E=25.1, 32.5, 40.7 MeV. Measured Ay(θ).
- 1982Sa19, 1982Sa37, 1979Sa38, 1978Sa33: (pol p,p) E=65 MeV. Measured Ay(θ).
- 1980Fa06, 1980Fa07: (p,p) E=20.9-44.1 MeV. Measured $\sigma(\theta)$.
- 1977Bi09: (p,p) E=1.093, 0.992 MeV. Measured σ
- 1973Be41: (pol p,p) E=40 MeV. Measured Ay(θ).
- 1971Ru04: (pol p,p') E=49.4 MeV. Measured $\sigma(\theta)$, Ay(θ). Five levels at 1460, 2530, 2910, 3230 and 3710 studied.
- 1969Ba23: (pol p,p) E=21 MeV. Measured $\sigma(\theta)$, Ay($\dot{\theta}$).
- 1968Jo14: (p,p') E=24.85 MeV. Measured $\sigma(\theta)$.
- 1966Hu05, 1966Hu12: (p,p') E=4.1, 7.3 MeV. Measured $\sigma(\theta)$.
- 1965Gr11: (p,p') E=14.1, 16.9 MeV. Measured $\sigma(\theta)$.
- 1964Bo27: (pol p,p) E=14.5 MeV. Measured $\sigma(\theta)$.
- 1962Ta05: (p,p') E=6.14 MeV. Measured $\sigma(\theta)$ for three levels.
- 1962An04: (p,p') E=14.8 MeV.
- 1961Ba29: (p,p') E=0.8-3.5 MeV. Measured $\sigma(\theta)$.
- 1961Be32: (p,p') E=7.3, 9.4 MeV, 21 levels reported
- 1961Ro13, 1961Ro05: (pol p,p) E=8, 10 MeV. Measured $\sigma(\theta)$.
- 1961Co29: (p,p) E=1-2 MeV.
- 1960Od01: (p,p') E=7.6-14.2 MeV. Measured $\sigma(\theta)$ for g.s. and 1460 peak. Two other peaks seen at 3700 and 4800.
- 1958Ty47: (p,p') E=185 MeV. Measured $\sigma(\theta)$.
- 1957Gi14: (p,p') E=9.5 MeV.
- 1956Ei15: (p,p') E=8.5, 9.0, 9.8 MeV. Measured $\sigma(\theta)$.
- 1956Va28: (p,p').
- 1956Bu95: (p,p) E=9.5 MeV.
- 1956Ki54: (p,p) E=14.5, 20, 31.5 MeV. Measured $\sigma(\theta)$.

1954Fr43: (p,p') E=9.5 MeV. Measured $\sigma(\theta)$.

1947He02: (p,p') E=9.2 MeV, levels reported at 1500 and 2400.

⁴⁰Ar Levels B(EL) values from 1985De03 correspond to different nuclear models (rotational or vibrational) and to different choice of low-lying levels in coupled-channel (CC) calculations. Known gamma-ray branching ratios and lifetimes were used in the analysis. The negative sign for some of these values is that of the corresponding matrix element. See full details in 1985De03. Multiple values of deformation parameters and transition probabilities (BE(L)) arise from choice of different nuclear

models and to selection of low-lying levels used in the analysis.

$E(level)^{\dagger}$	J ^{π@}	L&	$\beta_L R^a$	Comments
0 1462 2	0+ 2+	0 2	0.95	β_2 =0.242 5 or 0.220 4 (1985De03), 0.24 2 or 0.26 2 (1971Ru04), 0.21 (1968Jo14). B(E2)(from g.s.)=0.046 8, 0.0459 19, 0.0448 20, 0.0430 10, 0.0441 0, 0.0441 0,
2125 3	0+	0		0.044 / 10 (1985De03). L: ≤ 2 (1965Gr11). $\beta_1=0.05$ for L=1 (1968Jo14). $\beta_0=0.032$ 8 or -0.029 8 (1985De03). B(F2) (from 1460 2.1)=0.0046 / 7, 0.00078 / 4, 0.00014 4 (1085De03).
2529 3	2+	2	0.28	B(E2)(from 1460,2+)=0.0046 17, 0.00078 14, 0.00014 4 (1983De03). L: \leq (0),1 (1965Gr11). β_2 =0.33 3 (1985De03), 0.05 (1968Jo14). B(E2)(from g.s.)=0.0039 7, 0.00350 2, 0.0024 2 (1985De03). B(E2)(from 1460,2+)=0.0011 2, 0.00013 11, 0.00006 14 (1985De03). B(E4)(from 1460,2+)=0.0000048 12, 0.000079 8, 0.000047 41 (1985De03). B(E2)(from 2120.01)=0.007, 0, 0.23 4 (1985De03).
2897 5	4+	4	0.32	$\beta_4 = 0.107 \ 12 \ or \ 0.078 \ 7 \ (1985De03), \ 0.11 \ (1968Jo14).$ B(E4)(from g.s.)=0.00113 6, 0.00077 11, 0.00080 5 (1985De03). B(E2)(from 1460,2+)=0.024 4, 0.0040 1, 0.0054 22, 0.014 4 (1985De03). B(E4)(from 1460,2+)=0.00294 13, 0, 0.00063 37, 0.00005 9 (1095D 02)
3213 5	2+	2	0.22	(1985De03). β_2 =0.07 (1968Jo14). B(E2)(from g.s.)=0.0010 3 (1985De03). B(E2)(from 1460,2+)=0.0014 5 (1985De03). B(E4)(from 1460,2+)=0.00040 34 (1985De03).
3518 5	(2+)	(2)	0.17	β_3 =0.07 for L=3 (1968Jo14). E(level): complex structure (1988Bl04), known levels at 3512, 4+ and 3464, 6+ may be included in the peak at 3510. The angular distribution (in 1088Bl04) for 2510 days not some with that support for L=2.
3688 5	3-	3	1.00	(in 1988B104) for 5310 does not agree with that expected for L=2. β_3 =0.26 3 (1985De03,1968Jo14), 0.29 2 or 0.31 2 (1971Ru04). B(E3)(from g.s.)=0.0150 5 (DWBA), 0.0165 3 (CC) (1985De03). B(E2)(from 1460,2+)=0.0038 10 (1985De03). B(E5)(from 1460,2+)=0.000035 17 (1985De03).
3926 6	2+	2	0.22	B(E2)(from 1460,2+)=0.000035 17 (1985De03). $β_2$ =0.07 (1968Jo14). B(E2)(from g.s.)=0.0024 2 (1985De03). B(E2)(from 1460,2+)=0.0065 29 (1985De03). B(E4)(from 1460,2+)=0.00105 17 (1985De03).
4053 7 4092 7 4240 7				B(E4)(1101111400,2+)=0.0010517(1985De05).
4310 7	(2+,3-)	(2,3)		L: from 1968Jo14. J π : (1,3)- in Adopted Levels. β_2 =0.07, β_3 =0.08 (1968Jo14).
4430 7	3-	3	0.44	L: 2 (1965Gr11). J π : (0+:4+) and (4+) in Adopted Levels. β_4 =0.19 for J=4 (1968Jo14).
4484 <i>8</i> 4581 <i>7</i> 4612 <i>9</i>				

⁴⁰Ar Levels (continued)

$E(level)^{\dagger}$	$J^{\pi@}$	L&	$\beta_L \mathbf{R}^a$	Comments
4683 10				
4775 10				
4880 9		(4)		L: from 1965Gr11, (2,3,4) in 1968Jo14.
4941 <i>10</i>				
5004 <i>12</i>				
5280 20± 5410	(5-)	(5)	0.24	L: 0.22 for $L=4$
0.110	(0)	(0)	0.2	$J\pi$: 1- in Adopted Levels.
5460 <i>20</i> ‡				
5695 <i>33</i> [#]				
5900 20*	3-	3	0.32	$\beta_4 = 0.10$ for L=4.
6130 <i>20</i> [‡]	(2+)	(2)	0.22	$\beta_2 = 0.08 \ (1968 Jo14).$
				$J\pi$: no assignment in Adopted Levels. L: 0.25 for L=3 (1988Bl04)
6270 <i>33</i> [#]				<u><u><u></u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u>
6475 42#				
6650 <i>24</i> [#]				
7300 <i>20</i> ‡				

[†] From 1961Ka26, unless otherwise stated. The values seem to be systematically higher by about 10 keV as compared to the precisely known values in Adopted Levels.

[‡] From 1968Jo14.

From 1961Be32.

^(a) From L values. ^(b) From 1988B104, unless otherwise stated. ^(a) From 1988B104, $R=r_0A^{1/3}$, where A=40.

40 **Ar**(**p**,**p**' γ) 1976So05,1976So03

1976So05: E=6.75 MeV. Measured E γ , I γ , p γ coin, p $\gamma(\theta)$.

1976So03: E=6.75 MeV. Measured p γ coin, lifetimes by Doppler-shift attenuation method (DSA).

1979Be41: E=5.75 MeV. Measured lifetimes by DSA of 1461, 2524 and 3209 levels.

1976So05, 1976So03 and 1979Be41 are from the same group.

Others:.

1974Be62: E=3.74 MeV. Measured $\sigma(\theta)$, $p\gamma(\theta)$.

1972He04 (also thesis by 1971HeZQ): E=5.3 MeV; measured lifetime of 2121, 0+ level.

1971Pl04: E=4.7-5.8 MeV. Measured $\gamma \gamma(\theta)$, $p\gamma(\theta)$.

1966Hu05, 1966Hu12: E=4.1, 7.3 MeV. Measured $p\gamma(\theta)$.

1962Wa26: E=5.1 MeV. Measured E γ , I γ , $\gamma (\theta)$, levels reported at 1450, 2130, 2530, 2900, 4300 and 4590.

1961Ba29: E=0.8-3.5 MeV.

1959Ho96: E=4 MeV. Three γ rays reported in ⁴⁰Ar. A 4590 level with γ rays to 2530 and 2900 levels reported by 1962Wa26 has not been included here due to lack of confirmation in more recent studies.

			⁴⁰ Ar Levels
E(level)	$\mathrm{J}^{\pi\dagger}$	T _{1/2} ‡	Comments
0	0+		
1461	2+	1.35 ps 10	$T_{1/2}$: other: 0.72 ps +80-28 (1979Be41).
2121	0+	104 ps 14	$J\pi$: from $\gamma(\theta)$ (1962Wa26).
		*	$T_{1/2}$: from p γ (t) (1972He04). Other: >17 ps (1976So03).
			$I\gamma < 3$ for decay to g.s.
2524	2+	0.37 ps 4	$T_{1/2}$: other: 0.24 ps 7 (1979Be41).
2893	4+	3.0 ps +18-9	$J\pi$: (3-,4+) (1976So05).
			$I\gamma < 2$ for decay to g.s. and 2121 levels.

⁴⁰Ar Levels (continued)

E(level)	$J^{\pi\dagger}$	T ₁	/2 [‡]	С	omments				
3208 3511 3681 3919 4042 2 4084 2 4230 2	2+ 2+ 3- 2+ 3-	<: 83 0.1 0.2	24 fs fs <i>31</i> 10 ps +6-3 30 ps <i>4</i>	— — — — — — — — — — — — — — — — — — —	1/2: other: (level): tw 45 and 133	<21 fs o separa 33 gamm	(1979Be41). te levels near has, and the o	this energy in ther by 1705 a	Adopted Levels: one deexcited by nd 2768 gammas.
4301 2 4419 <i>3</i> 4484 <i>8</i>	(1,3 1-	-)- <(0.07 ps						
[†] From Adopted Levels. [‡] From DSA (1976So03).									
A_2 and	d A ₄ ai	re from	1976So05	5.			γ ⁽⁴⁰ Ar)		
]	E ^{level}	J_i^π	\mathbf{E}_{f}^{level}	J_f^{π}	Eγ	Iγ [‡]	Mult.	δ^\dagger	Comments
	1461 2121	2+ 0+	0 1461 2121	0+ 2+	1461 660	100 100	E2		$\begin{array}{c} A_2 = +0.40 \ 2, \ A_4 = -0.42 \ 3. \\ A_2 = -0.03 \ 3, \ A_4 = -0.04 \ 4. \end{array}$
	2524	2+	1461	0+ 2+	403 1063	<1 59 2	M1+E2	-0.41 +6-13	I_{γ} : 55 5 (1971P104). A_2 =-0.09 4, A_4 =-0.04 5. δ: other: -0.24 (1971P104)
			0	0+	2524	41 2	E2		I_{γ} : 45 5 (1971Pl04). A ₂ =+0.53 5, A ₄ =-0.43 8.
1	2893	4+	2524 1461	2+ 2+	369 1432	2 2 98 3	E2		I _γ : from 1971Pl04. Iγ<1 (1976So05). I _γ : from 1971Pl04. Iγ=100 (1976So05). δ (O/Q)=-0.08 7 from
:	3208	2+	2893	4+	315	2 2			$A_2 = +0.373, A_4 = -0.193.$ I_{γ} : from 1971Pl04. $I_{\gamma} < 1$ (1976So05).
			2524 2121	2+ 0+	684 1087	$^{<2}_{2\ 2}$			I_{γ} : from 1971Pl04. $I_{\gamma} < 2$
			1461	2+	1747	91 <i>3</i>	M1+E2	+0.11 7	(19705005). I_{γ} : 84 2 (1971P104). A_2 =+0.47 2, A_4 =-0.06 4. δ : other: +0.20 for J=2, 0 for J=1 (1971P104).
	3511	2+	0 3208	0+ 2+	3208 303	93 22			I_{γ} : 12 5 (1971Pl04). I_{γ} : from 1971Pl04. $I_{\gamma} < 3$
			2893	4+	618	2 2			(1976So05). I_{γ} : from 1971Pl04. $I\gamma < 5$ (1976So05)
			2524 2121 1461	2+ 0+ 2+	987 1390 2050	<5 <5 89 2	M1(+E2)	-0.05 11	I _{γ} : 84 2 (1971Pl04). A ₂ =+0.34 7, A ₄ =+0.04 8.
	3681	3-	0 3511 3208 2893 2524	0+ 2+ 2+ 4+ 2+	3511 170 473 788 1157	11 2 <7 <10 15 3 6 3			I for $J=2$. I γ : 12 5 (1971Pl04). I γ : 24 6 (1971Pl04). I γ : from 1971Pl04. I γ <6 (1976So05).

\mathbf{E}_{i}^{level}	J_i^{π}	\mathbf{E}_{f}^{level}	$\mathbf{J}_f^{\boldsymbol{\pi}}$	E_{γ}	I_{γ}^{\ddagger}	Mult.	δ^\dagger	Comments
		2121	0+	1560	<5			
		1461	2+	2220	85 <i>3</i>	E1(+M2)	-0.07 +5-11	I _γ : 70 <i>3</i> (1971Pl04). A ₂ =-0.43 <i>8</i> , A ₄ =+0.08 <i>10</i> .
		0	0 +	3681	<5			2 1
3919	2+	3681	3-	238	<2			
		3511	2+	408	<2			
		3208	2+	711	<2			
		2893	4+	1026	<2			
		2524	2+	1395	8 1			
		2121	0 +	1798	12 2			
		1461	2+	2458	21 3	M1+E2		$A_2 = -0.18 9, A_4 = +0.02 13.$
								δ : <-0.3 or >+6.
		0	0 +	3919	59 <i>3</i>	E2		$A_2 = +0.47 8, A_4 = -0.27 13.$
4042		2893	4+	1149	<10			
		2524	2+	1518 2	60 13			
		2121	0 +	1921	<10			
		1461	2+	2581	40 13			
		0	0 +	4042	<10			
4084	3-	2893	4+	1191	<10			
		1461	2+	2623 2	100			
		0	0 +	4084	<10			
4230		3681	3-	547 2	31 5			
		3511	2+	719	<10			
		3208	2+	1022	<10			
		2893	4+	1338 2	32 5			$A_2 = +0.63 \ 14, \ A_4 = +0.17$
		2524	2+	1708 2	37 5			$A_2 = +0.50 \ 15, \ A_4 = +0.23 \ 19$
		2121	0 +	2109	<15			17.
		1461	2+	2769	<10			
		0	0 +	4230	<10			
4301	(1,3)-	1461	2+	2840 2	100			A ₂ =+0.24 9, A ₄ =-0.15 13.
4419		2524	2+	1895	20 10			
		2121	0+	2298	<15			
		1461	2+	2958 <i>3</i>	80 10			
4484	1-	2121	0+	2363	<10			
		1461	2+	3023	<10			
		0	0+	4484	100	D		$A_2 = -0.29 5, A_4 = -0.10 7.$

 γ ⁽⁴⁰Ar) (continued)

[†] From 1976So05. [‡] From 1976So05, unless otherwise stated. Values from 1971Pl04 are given under comments.

⁴⁰Ar(pol d,d'),(d,d') 1976Se09

Includes (pol d,d) and (d,d).

1976Se09: (pol d,d') E=14.83 MeV. Measured $\sigma(\theta)$, vector analyzing power, DWBA and coupled-channel analyses, FWHM=110 keV. Uncertainty in measured cross sections is 15%.

Others:.

1987Nu01: (pol d,d') E=52 MeV. Measured vector analyzing powers for g.s. and first 2+ state.

1980Ha14: (pol d,d) E=56 MeV. Measured $\sigma(\theta)$, vector and tensor analyzing powers.

1980Ma10: (pol d,d) E=52 MeV. Measured $\sigma(\theta)$, vector analyzing power.

1978Bu22: (pol d,d) E=9.0, 10.75, 12.0 MeV. Measured $\sigma(\theta)$, vector analyzing power.

1975Ca24: (d,d) E=1.5-2.3 MeV. Measured $\sigma(\theta)$.

1970Fi01: (d,d) E=11.8 MeV. Measured $\sigma(\theta)$, deduced optical- model parameters.

1968Hi09: (d,d') E=52 MeV. Measured $\sigma(\theta)$, DWBA analysis for g.s., first 2+ and first 3- states.

1965Ja13: (d,d') E=10.6 MeV. Measured $\sigma(\theta)$. All states up to 3681 seen, except the 2121 level.

⁴⁰Ar Levels

$J^{\pi \ddagger}$	L	BL (DWBA)	Comments
0+	0		
2+	2	0.215	$\beta_2(CCBA) = +0.182$
	_		$\beta_2 = 0.22 - 0.25$ (1968Hi09)
			$\beta_2 = 0.22 \ 0.25 \ (1)001100)$
			Coupling parameter $\beta_{02} = 0.17$ (1987Nu01).
(0+)	(0)		coupling parameter p_{02} =0.17 (1907) (1007).
2_{\pm}	2	0.077	$\beta_{2}(CCBA) = -0.075$
2⊤ 1⊥	4	0.110	$\beta_2(CCBA) = -0.075.$ $\beta_3(CCBA) = \pm 0.130$
++ (2)	+ (2)	0.110	$\rho_4(CCDA) = +0.130$
(2+)	(2)	0.118	$p_2(CCBA) = +0.120.$
2+	2	0.076	
3-	3	0.225	$\beta_3(\text{CCBA}) = +0.203.$
			$\beta_3 = 0.21 - 0.25 \ (1968 \text{Hi09}).$
2+#		0.079#	
2+#	2	0.079#	
(2+)	(2)	0.153	
3-	3	0.115	
(3-)	(3)	0.094	
4+	4	0.095	
	$ \frac{J^{\pi \ddagger}}{0+} \\ \frac{0+}{2+} \\ (0+) \\ \frac{2+}{4+} \\ (2+) \\ \frac{2+}{3-} \\ \frac{2+\#}{2+\#} \\ (2+) \\ \frac{3-}{3-} \\ (3-) \\ \frac{4+}{3-} \\ (3-) \\ \frac{3-}{4+} \\ (3-) \\ (3-) \\ \frac{3-}{4+} \\ (3-) $	$\begin{array}{cccc} J^{\pi \ddagger} & L \\ 0+ & 0 \\ 2+ & 2 \\ \end{array}$ $\begin{array}{c} (0+) & (0) \\ 2+ & 2 \\ 4+ & 4 \\ (2+) & (2) \\ 2+ & 2 \\ 3- & 3 \\ \end{array}$ $\begin{array}{c} 2+^{\#} & 2 \\ (2+) & (2) \\ 3- & 3 \\ (3-) & (3) \\ 4+ & 4 \end{array}$	$\begin{array}{cccc} J^{\pi \ddagger} & L \\ 0+ & 0 \\ 2+ & 2 \\ \end{array} & \begin{array}{c} BL (DWBA) \\ 0.215 \\ \end{array} \\ (0+) & (0) \\ 2+ & 2 \\ 0.215 \\ \end{array} \\ (0+) & (0) \\ 2+ & 2 \\ 0.077 \\ 4+ & 4 \\ 0.110 \\ (2+) & (2) \\ 0.118 \\ 2+ & 2 \\ 0.076 \\ 3- & 3 \\ 0.225 \\ \end{array} \\ \begin{array}{c} 2+ \# \\ 2+ \# \\ 2+ & 2 \\ 0.079^{\#} \\ 2+ \# \\ 2+ & 2 \\ 0.079^{\#} \\ (2+) \\ (2+) & (2) \\ 0.153 \\ 3- & 3 \\ 0.115 \\ (3-) & (3) \\ 0.094 \\ 4+ & 4 \\ 0.095 \\ \end{array}$

 † Rounded-off values from Adopted Levels.

[‡] From L values. The assignments are the same in adopted levels, except for parentheses on some of the values.

[#] For 3919+3942 unresolved doublet.

⁴⁰ Ar(³ He, ³ He') 1960)Ag04
---	-------

Includes (3 He, 3 He). $\sigma(\theta)$ measured in all studies 1960Ag04: (3 He, 3 He') E=28.5 MeV. 1975Br26: (3 He, 3 He) E=26.5 MeV. 1973Mo13: (3 He, 3 He) E=28 MeV. 1969Zu02: (3 He, 3 He) E=15 MeV.

⁴⁰Ar(α , α ') 1979Da12,1970Wa17

Includes (α, α) .

1979Da12: (α, α') E=12-15 MeV. Measured $\sigma(\theta)$, FWHM=30-35 keV.

1970Wa17: (α, α') E=21.5, 22.2 MeV. Measured $\sigma(\theta)$, DWBA analysis, FWHM=140 keV.

- Others:.
- 1979Di03: (α, α') E=172.5 MeV. Measured $\sigma(\theta)$, deduced GQR, DWBA analysis, $\sigma(\theta)$ for g.s. and first 2+ also measured.
- 1976Yo02, 1975Mo04: (α, α') E=96 MeV. Measured $\sigma(\theta)$, deduced GQR, $\sigma(\theta)$ for g.s. and first 2+ also measured.
- 1976Be31: (α, α) E=104 MeV. Deduced nuclear parameters.

1972Oe01: (α, α) E=24, 29 MeV. Measured $\sigma(\theta)$, deduced back-angle enhancement and shell structure effects.

1970Bu25 (also 1970Iv04,1967Iv02): (α, α') E=13-17 MeV. Measured $\sigma(\theta)$, deduced optical-model parameters.

- 1969Ha14: (α, α) E=104 MeV. Measured $\sigma(\theta)$, deduced optical potentials, phase shifts.
- 1969Ga22: (α, α) E=18-29 MeV. Measured $\sigma(\theta)$.

1966Lu02: (α , α') E=18 MeV. Deduced optical-model parameters.

- 1964La14: $(\alpha, \alpha' \gamma)$ E=19.6 MeV. Measured $\sigma(\theta)$.
- 1959Ya01: (α, α') E=40 MeV.

1958Se51: (α, α') E=18 MeV.

⁴⁰Ar Levels

E(level) [†]	J ^{π@}	L^d	BL ^e	Comments
0	$0+^{\&}$	0		
1461 [‡]	$2+^{\&c}$	2	0.16	β_2 R=0.87, B(E2)(W.u.)=6.7 20 (1976Yo02).
2121 [‡]	$0+^{\&c}$	0	0.014	
2524 [‡]	$2+^{\&c}$	2	0.05	
2893 [‡]	$4+^{\&c}$	4		
3208 [‡]	$(1-)^{\&c}$	(1)	0.05	J π : L=1 (1970Wa17) disagrees with J π =2+ in Adopted Levels.
3464	NATURAL			((),,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
3511	$(2+,1-)^{\&b}$			E(level): 3560 in 1970Wa17 is in disagreement.
3681 [‡]	3_&c	3	0.16	Č
3919 ^{‡#}	NATURAL			
3942#	NATURAL			
4041	NATURAL			Jπ: 0+,1-,2+,3-,4+ (1979Da12).
4082	NATURAL			
4229	$3+^{ab}$			
4300 [‡]	NATURAL			
4324	NATURAL			
4341#	NATURAL			
4358#	NATURAL			
4420 [‡]	NATURAL			
4481	$1 - {}^{\&b}$			
4562	NATURAL			
4580	NATURAL			
4612 [‡]				
4683	UNNATURAL			
4769	NATURAL			
4808	NATURAL			
4880*	NATURAL			
4942 5004	NATURAL			
5166	$(2_{\perp})^{\&b}$			
5269	NATURAL			
5310 [‡]	NATURAL			
5400	NATURAL			
5465				
5515	NATURAL			
5575	NATURAL			
5608#	(NATURAL)			
5630 ^{‡#}	(NATURAL)			
5671	NATURAL			

⁴⁰Ar Levels (continued)

E(level) [†]	J ^{π@}	L^d	BL^{e}	Comments
5718				
5880	NATURAL			
5906 [‡] 5950	NATURAL			
6053 6140 [‡]	NATURAL			
6208	NATURAL			
$17.7 \times 10^3 2$		2		E(level): isoscalar giant quadrupole resonance with FWHM=6900 600 from 1979Di03. Other: 17600 300 with FWHM=4700 300 (1976Y002).

not excluded (1979Di03).

[†] Rounded-off value from Adopted Levels for the groups reported by 1979Da12.

[‡] Group reported by 1970Wa17 also. [#] 3919+3942, 4341+4358 and 5608+5630 are unresolved peaks.

^(a) Natural/unnatural parity state from 1979Da12.
[&] Natural parity state (1979Da12).

^{*a*} Unnatural parity state (1979Da12).

^b From 1979Da12. ^c From L-value of 1970Wa17.

^d From 1970Wa17. ^e From 1970Wa17.

1998Ib01,1992Cu04,1970Na05 **Coulomb excitation**

1998Ib01: ¹⁹⁷Au(⁴⁰Ar,⁴⁰Ar') E=37.4-48.2 MeV/nucleon. Measured Eγ, Iγ, integrated cross section, deduced B(E2). 1992Cu04: ²⁰⁸Pb(⁴⁰Ar,⁴⁰Ar') E=12.5 MeV/nucleon. Measured $\gamma(\theta, H)$ in polarized gadolinium, (particle) γ coin, deduced g

factor. 1970Na05: 130 Te(40 Ar, 40 Ar') E=110-125 MeV. Measured B(E2) and quadrupole moment of first 2+ state by reorientation effect. 1965Gu10: 27 Al(40 Ar, 40 Ar') E=48 MeV. Measured B(E2) for first 2+ level.

Other:.

1995Gr25: 40 Ar(62 Ni, 62 Ni') E=150 MeV. Measured E γ , I γ . Deduced content of 40 Ar in target.

⁴⁰Ar Levels

E(level)	J^{π}	Comments
0	0+	
1461	2+	g=-0.1 I (1992Cu04).
		Q = +0.014 (19/0Na05).
		$B(E2)=0.037\ 7\ (1998Ib01),\ 0.032\ 5\ (1970Na05),\ 0.049\ 10\ (1965Gu10).$
		$J\pi$; from Adopted Levels.

40 Ca(14 C, 14 O) 1980Dr09

1980Dr09: E=51 MeV. Measured $\sigma(\theta)$, DWBA analysis.

		⁴⁰ Ar Levels
E(level)	$J^{\pi \ddagger}$	$d\sigma/d\Omega (\mu b/sr)^{\dagger}$
0	0+	8.5 8
1460	2+	7.5 5

[†] At 15°, read off (by the evaluators) from $\sigma(\theta)$ plot. [‡] From Adopted Levels.

41 K(d, ³ He)	1983Bh03
-------------------------------	----------

J π (⁴¹K g.s.)=3/2+. 1983Bh03: E=22.8 MeV. Measured $\sigma(\theta)$, DWBA analysis. FWHM=140 keV.

	40	Ar Lev	els
E(level)	$J^{\pi\dagger}$	L	C^2S^{\ddagger}
0	0+	2	0.43
1450 30	2+	2	0.72
2510 <i>30</i>	2+	0+2	0.02,0.11
3210 30	2+	0+2	0.28,0.18
3520 30	2+	2	0.66
4360 30	2+	0	0.39
4530 30			
5200 30	(2,3,4)+	0	0.35
5820 <i>30</i>			
6230 <i>30</i>			

[†] From Adopted Levels.
[‡] 1990En08 give S values, C²=0.80.

42 Ca(14 C, 16 O) 1980Ma40

40 . -

1980Ma40: E=78 MeV.

			⁴⁰ Ar Lev	vels	
E(level) [†]	$J^{\pi \ddagger}$	Comments			
0	0+				
1500	2+				
2130		Very weak.			
3200		·			
4300					
4700					
5300					

[†] Values were read off (by the evaluators) ¹⁶O spectrum shown by 1980Ma40, uncertainty is estimated as 100 keV. [‡] From Adopted Levels for first two levels, the others are expected to be 2+ states.

⁴⁴Ca(³He,⁷Be) 1976St11

1976St11: E=70 MeV. Measured $\sigma(\theta)$, FWHM=140 keV.

		⁴⁰ Ar Levels
E(level)	$J^{\pi\dagger}$	S
0	0+	0.015
1460	2+	
2120	0+	
2520	2+	
2890	4+	
3210	1,2+‡	
3510	1,2+‡	
3680	3-	

[†] As given by 1976St11. [‡] 2+ in Adopted Levels.

⁴⁴Ca(α ,2 α) 1976Sh02

1976Sh02: E=90 MeV. Measured integrated cross section. FWHM=250-300 keV.

		⁴⁰ Ar Levels					
E(level)	$J^{\pi \dagger}$	Integrated σ (mb/sr ²)					
0	0+	0.58 12					
1440 50	2+	0.027 32					
2090 90	0+	0.052 34					
4000 <i>40</i> [‡]		0.080 44					
5750 <i>70</i> ‡		0.026 25					

[†] From Adopted Levels.[‡] Composite of several levels.

Adopted Levels, Gammas

 $Q(\beta^{-})=1311.07 \ 11; \ S(n)=7799.51 \ 7; \ S(p)=7582 \ 5; \ Q(\alpha)=-6438.26 \ 20$ 2003Au03

Other reactions:.

⁴⁰K(α, α') E=24, 29 MeV: 1972Oe01, measured $\sigma(\theta)$.

⁴¹K(³He, α) E=24 MeV: 1973DeWO. ⁴¹K(³He, α) E=12.5 MeV: 1977McZQ: measured $\alpha\gamma$ coin, deduced three levels in ⁴⁰K near 4384 with T=2, IAS.

⁴⁵Sc(p,⁶Li) E=45 MeV: 1970BeYK: measured $\sigma(\theta)$ for g.s. and some other unresolved structures which are strongly forward peaked.

Hyperfine structure, isotope-shifts, moments, etc. (measurements): 1997Si24, 1982Pe14, 1982Du19, 1981Le19, 1976Bo21, 1974Sa24, 1974Br12, 1972Jo09, 1969Jo06, 1968Ne05.

In XREF column, level population indicated by letter O or o refers to the following level energies in different reactions:.

 40 K(γ , γ): Mossbauer: 0, 29.8.

 40 Ca(pol d,2p),(d,2p): 0, 800, 2300. 40 Ca(⁷Li,⁷Be): 0, 30, 850, 1960, 2270, 7000, 11000 (analog of GDR in 40 Ca). 40 Ca(¹²C, ¹²N),(¹³C, ¹³N): 0, 30, 740, 890 and giant resonances at 11 and 12.0 MeV. 41 K(n,2n),(n,2n\gamma): 0, 30, 850, 1640.

⁴⁰Ca(p,³He): 0, 1640, 2290, 4375.

⁴⁰K Levels

See ${}^{39}K(n,\gamma)$,(n,n): resonances dataset for 69 resonances in the excitation region: 7800.6 to 7987.8.

Cross Reference (XREF) Flags

$ \begin{array}{lll} & {}^{37}{\rm Cl}(\alpha,n\gamma) \\ {\rm B} & {}^{38}{\rm Ar}(\alpha,d) \\ {\rm C} & {}^{39}{\rm K}(n,\gamma), ({\rm pol}\ n,\gamma) \ {\rm E} \\ {\rm D} & {}^{39}{\rm K}(d,p) \\ {\rm E} & {}^{39}{\rm K}(d,p\gamma) \\ {\rm F} & {}^{40}{\rm Ar}(p,n\gamma) \\ {\rm G} & {}^{40}{\rm Ar}({}^{3}{\rm He},t) \end{array} $	$ \begin{array}{rcl} & H & {}^{40}Ca(n,p\gamma),(n,p) \\ & I & {}^{40}Ca(t,{}^{3}He) \\ \\ = thermal & J & {}^{41}K(p,d) \\ & K & {}^{41}K(d,t) \\ & L & {}^{41}Ca(d,{}^{3}He) \\ & M & {}^{42}Ca(pol \ d,\alpha),(d,\alpha) \\ & N & (HI,xn\gamma) \end{array} $	O P Q R S T	40 K(γ,γ):Mossbauer 40 Ca(pol d,2p),(d,2p) 40 Ca(⁷ Li, ⁷ Be) 40 Ca(¹² C, ¹² N),(¹³ C, ¹³ N) 41 K(n,2n),(n,2nγ) 42 Ca(p, ³ He)
---	---	----------------------------	--

E(level) [†]	$J^{\pi \ddagger}$	$T_{1/2}^{\#}$	XREF	Comments		
0	4-	1.248×10 ⁹ y 3	ABCDEFgHIJKLMNOPQRST	$\mu = -1.298100 \ 3 \ (1989 \text{Ra}17, 1974 \text{Sa}24).$ $Q = -0.061 \ 5 \ (1989 \text{Ra}17, 1972 \text{Jo09}, 1971 \text{St}12).$ $\% \beta = -89.28 \ 13.$ $\% \epsilon + \% \beta + = 10.72 \ 13.$		
				J π : 3rd forbidden β decays to 0+ in ⁴⁰ Ar and ⁴⁰ Ca; unnatural parity in (pol d, α). μ : nuclear magnetic resonance (1974Sa24). Others: -1.2982 4 (1952Ei09), 1.291 5 (1949Da01). Q: quadrupole resonance/optical level crossing (1972Jo09,1969Jo06). Others: 1962Bu10, 1968Ne05. $\%\beta^-$, $\%\epsilon+\%\beta^+$: deduced from γ/β^- (=I(electron capture to 1460.9 level in ⁴⁰ Ar)/I(β^- to ⁴⁰ Ca g.s.))=0.1195 14 (1978LeZA), I β^+ (to ⁴⁰ Ar g.s.)=0.00103% 11 (1990En08), and ϵ/β^+ (to ⁴⁰ Ar g.s.)=45.2 14 (3U theory). J π : from unique 3rd forbidden β^- spectral shape for decay to 0+ level and L transfer in charge-particle reactions.		

E(level)[†]

 $J^{\pi \ddagger}$

⁴⁰K Levels (continued) $T_{1/2}^{\#}$ XREF Comments $T_{1/2}$: from 2004Ko09 and 2002Gr01; the same value from measurements of specific activity of natural potassium salts using liquid-scintillation counting (LSC) technique. (2002Gr01 reported a value of 1.248×10^9 y 2, later adjusted to 1.248×10^9 y 3 by 2004Ko09 to correct the quoted uncertainty on measured isotopic abundance of 40 K). Both papers used natural abundance of 40 K as 0.01167% 2 (1975Ga24). The natural abundance of 40 K=0.0117% 1 (as recommended in the International Union of Pure and Applied Chemistry 70, 217 (1998), based on the measured value of 1975Ga24) would give about four times larger uncertainty on $T_{1/2}$. The earlier values of 1.265×109 y 13 (1999BeZS,1999BeZQ) based on recomputation of 1.277×10^9 y 8 (evaluation by 1973EnVA); and 1.26×10^9 y 1 (evaluation by 1990Ho28 from 14 different measurements out of a total of 34 measurements listed) are in good agreement. Variation of $T_{1/2}$ due to environmental conditions has been studied by 2001No10, where no significant effect has been reported. Earlier (pre-1977) measurements of partial (β^- and ce) and/or total T_{1/2} of ⁴⁰K: 1977Ce04, 1972Go21,

1966Fe09, 1965Le15, 1965Br25, 1962Fl05, 1961Gl07, 1960Sa31, 1960Eg01, 1959Ke26, 1957We43, 1956Mc20, 1955Ba25, 1955Ko21, 1955Su38, 1953Bu58, 1950Sa52, 1947Gl07. Another

29.8299 5 3- 4.25 ns 6 A CDEFgHIJKLM OPQR μ -1.29 (1989Ral7,1974Br12). J π : L(t, ³ He)=3; π =N in (pol d, α); γ (circ pol) in (n, γ). μ : dPAD method (1974Br12). T _{1/2} : weighted average of 4.30 ns 6 (α ,n γ); 4.24 ns 9 (n, γ); 4.13 ns 12 (γ , γ') and 3.88 ns 35 (p, γ). Adopted (1977En02) neutron pickup spectroscopic factor=small (L=1) and 0.56 10 (L=3). Adopted (1977En02) neutron stripping spectroscopic factor=2.5 7 (L=2). 800.1427 19 2- 0.28 ps 4 ABCDEFgHIJKLM PQR J π : $\gamma(\theta$,pol) in (p, η); $\gamma(circ pol)$ in (n, γ). Adopted (1977En02) neutron pickup spectroscopic factor=0.01 1 (L=1) and 0.07 2 (L=3). Adopted (1977En02) neutron stripping spectroscopic factor=0.02 1 (L=1) and 0.07 9 (L=3). Adopted (1977En02) neutron stripping spectroscopic factor=1.2 4 (L=2). 891.398 18 5- 0.87 ps 14 ABCDEFgHIJKLM PQR J π : $\gamma(\theta$,pol) in (H, π ,n γ); L(α ,d)=5. Adopted (1977En02) neutron pickup spectroscopic factor=0.31 6 (L=3). Adopted (1977En02) neutron stripping spectroscopic factor=0.31 6 (L=3). Adopted (1977En02) neutron stripping spectroscopic factor=0.31 6 (L=3). Adopted (1977En02) neutron stripping spectroscopic factor=0.31 6 (L=3).					16 references (from 1931 to 1971) are listed by 1990Ho28 and in the 1978 Table of Isotopes (1978LeZA); but are not present in the NSR database. Adopted (1977En02) neutron pickup spectroscopic factor=0.56 <i>10</i> (L=3). Adopted (1977En02) neutron stripping spectroscopic factor=0.94 <i>14</i> (L=3). Adopted (1977En02) proton pickup spectroscopic factor=2.5.7 (L=2).
$11_{1/2}$. Weighted average of 4.30 fb 0 (0.17), 4.24 fb 9 (n, γ); 4.13 ns 12 (γ , γ') and 3.88 ns 35 (p, n γ). Adopted (1977En02) neutron pickup spectroscopic factor=small (L=1) and 0.56 10 (L=3). Adopted (1977En02) neutron stripping spectroscopic factor=0.03 2 (L=1) and 0.96 12 (L=3). Adopted (1977En02) proton pickup spectroscopic factor=2.5 7 (L=2). 800.1427 19 2- $0.28 \text{ ps } 4$ ABCDEFgHIJKLM PQR J π : $\gamma(\theta, \text{pol})$ in (p, $\eta\gamma$); $\gamma(\text{circ pol})$ in (n, γ). Adopted (1977En02) neutron pickup spectroscopic factor=0.01 1 (L=1) and 0.07 2 (L=3). Adopted (1977En02) neutron stripping spectroscopic factor=1.2 4 (L=2). B91.398 18 5- $0.87 \text{ ps } 14$ ABCDEFgHIJKLMN PQR J π : $\gamma(\theta, \text{pol})$ in (H, $\pi\gamma$); $L(\alpha, d)=5$. Adopted (1977En02) neutron pickup spectroscopic factor=0.31 6 (L=3). Adopted (1977En02) neutron stripping spectroscopic factor=0.31 6 (L=3). Adopted (1977En02) neutron stripping spectroscopic factor=0.88 10 (L=3).	29.8299 5	3-	4.25 ns 6	A CDEFgHIJKLM OPQR	Lactor=2.5 γ (L=2). μ =-1.29 9 (1989Ra17,1974Br12). Jπ: L(t, ³ He)=3; π=N in (pol d,α); γ(circ pol) in (n,γ). μ : dPAD method (1974Br12). T: weighted average of 4.30 ns 6 (α nz): 4.24 ns 9
800.1427 19 2- 0.28 ps 4 ABCDEFgHIJKLM PQR $J\pi: \gamma(\theta, pol)$ in $(p, \gamma); \gamma(\text{circ pol})$ in (n, γ) . Adopted (1977En02) neutron pickup spectroscopic factor=0.01 1 (L=1) and 0.07 2 (L=3). Adopted (1977En02) neutron stripping spectroscopic factor=0.02 1 (L=1) and 0.77 9 (L=3). Adopted (1977En02) proton pickup spectroscopic factor=1.2 4 (L=2). 891.398 18 5- 0.87 ps 14 ABCDEFgHIJKLMN PQR $J\pi: \gamma(\theta, pol)$ in (HI, $xn\gamma$); L(α,d)=5. Adopted (1977En02) neutron pickup spectroscopic factor=0.31 6 (L=3). Adopted (1977En02) neutron stripping spectroscopic factor=0.88 10 (L=3).					(n, γ); 4.13 ns 12 (γ , γ') and 3.88 ns 35 (p,n γ). Adopted (1977EnO2) neutron pickup spectroscopic factor=small (L=1) and 0.56 10 (L=3). Adopted (1977EnO2) neutron stripping spectroscopic factor=0.03 2 (L=1) and 0.96 12 (L=3). Adopted (1977EnO2) proton pickup spectroscopic factor=2.5 7 (L=2).
891.398 18 5- 0.87 ps 14 ABCDEFgHIJKLMN PQR J π : $\gamma(\theta, \text{pol})$ in (HI,xn γ); L(α ,d)=5. Adopted (1977En02) neutron pickup spectroscopic factor=0.31 6 (L=3). Adopted (1977En02) neutron stripping spectroscopic factor=0.88 10 (L=3).	800.1427 19	2-	0.28 ps 4	ABCDEFgHIJKLM PQR	J π : $\gamma(\theta, \text{pol})$ in (p, γ) ; $\gamma(\text{circ pol})$ in (n, γ) . Adopted (1977En02) neutron pickup spectroscopic factor=0.01 <i>1</i> (L=1) and 0.07 2 (L=3). Adopted (1977En02) neutron stripping spectroscopic factor=0.02 <i>1</i> (L=1) and 0.77 9 (L=3). Adopted (1977En02) proton pickup spectroscopic factor=1 2 4 (L=2)
	891.398 <i>18</i>	5-	0.87 ps 14	ABCDEFgHIJKLMN PQR	J π : $\gamma(\theta, \text{pol})$ in (HI,xn γ); L(α ,d)=5. Adopted (1977En02) neutron pickup spectroscopic factor=0.31 6 (L=3). Adopted (1977En02) neutron stripping spectroscopic factor=0.88 <i>10</i> (L=3).

 ${}^{40}_{19}\text{K}_{21}$ -3

⁴⁰K Levels (continued) $I^{\pi\ddagger}$ $T_{1/2}^{\#}$ XREF E(level)[†] Comments Adopted (1977En02) proton pickup spectroscopic factor=3.2 9 (L=2). $J\pi$: L(p,³He)=L(³He,t)=0; n(θ) and $\gamma(\theta)$ in (p,n γ). 1643.639 11 0 +0.336 µs 12 A CDEFGHI K ST $T_{1/2}$: weighted average of 0.340 μ s 7 (p,n γ) and $0.294 \ \mu s \ 23 \ (n, 2n\gamma).$ Adopted (1977En02) neutron pickup spectroscopic factor=0.06 2 (L=2). Adopted (1977En02) neutron stripping spectroscopic factor=0.10 3 (L=2). 1959.068 11 2 +0.59 ps 10 A CDEFGHI K M Q J π : $\gamma(\theta, \text{pol})$ in $(p, n\gamma)$. Adopted (1977En02) neutron pickup spectroscopic factor=0.02 1 (L=0), 0.07 2 (L=2). Adopted (1977En02) neutron stripping spectroscopic factor=0.01 1 (L=0), 0.02 1 (L=2). 2047.354 16 0.34 ps 4 A CDEF Hi 2-Μ J π : $\gamma(\theta, \text{pol})$ in $(p, n\gamma)$; $\gamma(\text{circ pol})$ in (n, γ) . Adopted (1977En02) neutron stripping spectroscopic factor=0.52 13 (L=1). J π : L(d,³He)=0; $\gamma(\theta, \text{pol})$ in (p,n γ); also $\gamma(\text{circ pol})$ in 2069.809 20 3-0.47 ps 10 ABCDEF Hi L (n,γ) . Adopted (1977En02) neutron stripping spectroscopic factor=0.37 10 (L=1). Adopted (1977Èn02) proton pickup spectroscopic factor=0.59 15 (L=0). 2103.668 24 0.52 ps 10 1-A CDEF HI $J\pi$: $\gamma(\theta)$ in $(p,n\gamma)$; L(d,p)=1; also $\gamma(\text{circ pol})$ in (n,γ) . 2260.40 4 59 fs 10 A CDEF HI K M Pq 3 +J π : $\gamma(\theta, \text{pol})$ in $(p, n\gamma)$; π =N in $(\text{pol } d, \alpha)$. Adopted (1977En02) neutron pickup spectroscopic factor=0.86 22 (L=2). Adopted (1977En02) neutron stripping spectroscopic factor=0.04 2 (L=2). 2289.871 11 83 fs 14 ΡQ J π : $\gamma(\theta, \text{pol})$ in $(\alpha, n\gamma)$. 1 +A CdEFgHi K m t 2290.493 20 3-0.156 ps 20 ABCdEFgHi PQ t J π : $\gamma(\theta, \text{pol})$ in $(\alpha, n\gamma)$; L(d,p)=3. 2397.165 25 4-35 fs 14 A CDEF HI KLM J π : L(d,³He)=0; π =U in (pol d, α). р 2419.171 21 2-0.55 ps 14 A CDEF HI М J π : L(d,p)=1; $\gamma(\theta)$ in (p,n γ); π =U in (pol d, α); γ (circ р pol) in (n, γ) . 2542.77 17 7 +1.09 ns 7 AB Ε Ι MN μ =+4.1 7 (1989Ra17,1976Bo21). J π : $\gamma(\theta, \text{pol})$ in $(\alpha, n\gamma)$ and (HI, xn γ). μ : iPAD method (1976Bo21). Other: 4.4 11 (recoil into gas, 1981Le19). 2558 Hi 2575.93 3 2+0.130 ps 17 A CDEF Hi K M $J\pi$: $\gamma(\theta)$ in $(p,n\gamma)$; L(d,p)=2; γ from 2-. 2625.990 25 0-0.215 ps 35 A CDEF HI М J π : from (pol d, α); isotropic $\gamma(\theta)$ in (p,n γ). J π : $\gamma(\theta, \text{pol})$ in $(\alpha, n\gamma)$ and $(p, n\gamma)$; $L(t, {}^{3}\text{He})=1$. <28 fs 2730.372 18 1(-)A C EF Ι m 2746.91 5 0.130 ps 35 A CD F $J\pi$: $\gamma(\theta, pol)$ in $(\alpha, n\gamma)$ and $(p, n\gamma)$. (2,3)m 2756.72 3 2 +<21 fs A C FgHi $J\pi$: $\gamma(\theta)$ in $(\alpha, n\gamma)$ and $(p, n\gamma) \gamma(\theta)$; γ to 0+. m 2786.644 16 <38 fs J π : $\gamma(\theta, \text{pol})$ in $(\alpha, n\gamma)$. 3+AbCdeFg i m <28 fs deF J π : L(d,³He)=0. 2787.4 3 A i (3,4)-Lm 2807.88 4 0.14 ps 4 A CDEF HI М J π : $\gamma(\theta)$ in $(\alpha, n\gamma)$; L(d,p)=1. (1,2)-2879.01 22 6+ 0.27 ps 10 А Ι Ν J π : $\gamma(\theta, \text{pol})$ in (HI, xn γ). 2950.8 6 35 fs 21 D Ι А $J\pi$: γ to 4-. 2985.87 4 (2-,3+)69 fs 28 CD Ι М $J\pi$: γ 's to 2+, 2- and 3-; π =U in (pol d, α). А Ef: I: 3017. 3027.95 3 2-<50 fs Ι J π : γ 's to 1+ and 4-; π =U in (pol d, α); RUL for γ to A CD М Ef: I: 3017. J π : L(α ,d)=4. 3100.2 7 (4,5)+69 fs 21 AB gΙ m Ef: I: 3100. 3109.721 23 (1,2)+<97 fs CDE g i $J\pi$: L(d,p)=0. m 3128.36 8 <21 fs A CD $J\pi$: γ 's to 1+ and 4-; RUL for γ to 1+. 2-Ι М Ef: I: 3120. 3146.44 5 1 A CD J π : $\gamma(\theta)$ in $(\alpha, n\gamma)$. m

$E(level)^{\dagger}$	$\mathrm{J}^{\pi \ddagger}$	T _{1/2} #	XREF				Comments
3153.81 6	(2.3)-	<21 fs	A C		m		$J\pi$: γ 's to 2+ and 4-: RUL.
3228.67 5	2-	28 fs 21	A CDE	I	М		J π : L(t, ³ He)=1+3; π =U in (pol d, α); γ 's to 1+, 1-
3293 10	UNNATURAL			I	М		$J\pi$: L(t, ³ He)=(0+2): π =U, $J\pi \neq 0$ - in (pol d, α).
3368.03 8	(2.3)-		CDE	I	М		$J\pi: L(d.p)=1: \gamma \text{ to } 4$
3393.63 5	2-		CD	i	М		$J\pi$: L(d,p)=1; π =U, $J\pi \neq 0$ - in (pol d, α); γ to 2+.
3414.34 3	2+		CD	i	М		$J\pi$: L(d,p)=0+2; γ 's to 3+ and 3
3439.144 25	(2+)		Сg	i			$J\pi$: γ 's to 0+ and 3-; γ (circ pol) in (n,γ) .
3448 10	(3,5)+		B g	ji	М		J π : L(α ,d)=4; π =U in (pol d, α). Ef: β : 3445
3486.21 3	2-		CD	i	М		J π : L(d,p)=1; π =U, J π \neq 0- in (pol d, α).
3556.97 4	(1- to 4+)		С	T	М		J π : γ 's to 2+ and 3-; J π =1-,2+,3- preferred from
2500 24 2	2		(TD)				$\pi = (N)$ in (pol d, α).
3599.24 3	2-		CD	1	m		$J\pi$: L(d,p)=1; γ s to 2- and 3
3029.95 4	$2^{-}, 3^{-}$	< 69 18	CDE	1	m		$J\pi$: L(a,p)=1; γ s to 3- and 4
3003.739 23	(3,4)+		CD	T	М		$J\pi$: L(α ,d)=4; γ to 2+. Ef: M: 3682.
3717 4	(≤ 3)-		D g	; i	М		J π : L(d,p)=1; J π =2- preferred from π =(U) in (pol d, α).
3738.48 <i>3</i>	1+		bCD g	; i	М		J π : γ 's to 0+ and 3+; π =U in (pol d, α). L(α ,d)=4 is inconsistent
3767.79 13	(≤ 3)-		bCD	i	М		$J\pi$: L(d,p)=1; $J\pi$ =2- preferred from π =(U) in (pol d α)
3797.57 3	(1+)		CD	i	М		$J\pi$: γ to 0+; π =U in (pol d, α); L(d,p)=0,1. J π =2- is
3821 43 3	2-		CD		м		In the completely function of α . I π : I (d p)=1: π -II in (pold α): γ to 3-
3840 228 24	(1 2+)		CD	i			π : $\mu(\mathbf{q}, \mathbf{p}) = 1, \ \pi = 0$ in (pol $\mathbf{q}, \mathbf{w}), \ \gamma$ to 3 .
3868 66 4	2-		CDE	i	м		π : I (d p)-1: \sqrt{s} to 1+ 1- and 4-: π -U in (pold α)
3887.92.5	(1 - 23)		hCD	i	m		$\pi: \sqrt{s}$ to 2+ 2- and 3-
3898.8	(1-,2,3)		b D	i i	m		5π . 75 to 2π , 2^{-} and 5^{-} .
3923 90 18	$(1 - t_0 4 +)$		bCD	-	M		$I\pi$: γ 's to 2+ and 3-: $I\pi$ -2- 3+ preferred from π -(I)
3723.70 10	(1 10 41)		DOD				in (pold α)
3996 10	UNNATURAL			i	М		$J\pi$: $\pi=U$, $J\pi\neq0$ - in (pol d. α).
4020.35 4	(< 3)-		CD	i	М		$J\pi$: L(d,p)=1: $J\pi$ =2(0-) preferred from π =(U) in
1020100			02	-			(pol d. α).
4075 5			D	i	М		$(\mathbf{F} = \mathbf{F})$
4104.46 4	(1-,2,3-)		Cd	i	m		$J\pi$: γ 's to 1+ and 1
4110.84 <i>3</i>	(1-,2,3)		Cd		m		$J\pi$: γ 's to 2+, 2- and 3
4149.01 <i>3</i>	(2-,3)		С		М		J π : γ 's to 2- and 4-; primary γ from 1+,2+; J π =2-,3+
							preferred from π =(U) in (pol d, α).
4180.03 <i>3</i>	(3-)		С	i	М		$J\pi$: γ 's to 2+, 2- and 5
4213.07 9	(2-,3+)		CD	i	М		J π : γ to 3-; primary γ from 1+,2+; π =U in (pol d, α).
4253.62 4	1-		CD	Ι	М		J π : L(d,p)=1; γ to 0+. π =(U) in (pol d, α) is
4280 52 8	2-		С	т			Inconsistent. $I\pi$: L(t ³ He)=1+3
4300 5	2-		Ū	-	м		π : $L(d, ne)=1$; $\pi=U$ $\pi\neq 0$ - in (nol $d\alpha$)
4352 5			D	т	m		$\pi: \pi$ -U in (pold α)
4365 6 4	(8+)	0.36 ps 14	D	-	mN		$I\pi$: γ 's to 6+ and 7+
4384.0.3	(0+)	0.50 ps 17	FG	т	min	т	T=2
1501.05			10	-		-	$J\pi$: L(³ He,t)=L(p, ³ He)=0; $\gamma(\theta)$ in (p,n γ).
4395.88.3	(0, 1, 2)-		CD		М		1: from $(p,n\gamma)$. $I\pi$: $L(d,p)=1$: γ to $1+$: $\pi=(U)$ in $(pol d,\alpha)$ suggests
4419 36 7	(2 - 3.4 +)		C				2 π : γ to 4-: primary γ from 1+2+
4472.99.6	(2-3)-		CD	т	м		$I\pi$: $I(d\mathbf{n})=1$: \sqrt{s} to 2- 3- and 4-
4508	(2,3)		50	Ť			$(0, 1, 1, 0, p)^{-1}$, $(0, 1, 0, 2, 0, 2, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,$
4537.06 4	2-		CD	Ť	м		$J\pi$: L(d p)=1: π =U, $J\pi \neq 0$ - in (pol d α): γ to 3-
4587 4	2-		D	-	М		$J\pi$: L(d,p)=1: π =U, $J\pi \neq 0$ - in (pol d, α).
4659 4	2-		D		М		$J\pi$: L(d,p)=1; π =U, $J\pi \neq 0$ - in (pol d, α).

⁴⁰K Levels (continued)

$E(\text{level})^{\dagger}$	$J^{\pi \ddagger}$	$T_{1/2}^{\#}$	XREF				Comments
4697 10	UNNATURAL				М		$J\pi$: π =U in (pol d, α).
4744.093 24	(2+)		С		М		$J\pi$: γ 's to 0+, 3+ and 3
4761 5	(1,2)+		D		М		J π : L(d,p)=0; π =(U) in (pol d, α) prefers 1+.
4788.65 8	(1+)		CD	I	М		$J\pi$: γ 's to 0+. 0- and 3+: π =(U) in (pol d. α). But
							L(d,p)=1 suggests (<3)
4805 4	(≤ 3)-		D		М		$J\pi$: L(d,p)=1.
							Ef: M: 4827.
4848 10					М		
4872.55 6	(2,3)-		CD		m		$J\pi$: L(d,p)=1; γ to 4
4875.6 4	9+	<0.7 ps			mN		$J\pi$: $\gamma(\theta, pol)$.
4910 9	2-	•	D		М		$J\pi$: L(d,p)=1; π =U, $J\pi \neq 0$ - in (pol d, α).
4944 5	(≤ 3) -		D		М		J π : L(d,p)=1; J π =2- preferred from π =(U) in (pol
							d, α).
4992.94 9	(2-,3+)		CD		М		$J\pi$: π =U in (pol d, α); γ 's to 1+ and 3
5027 5			D		М		
5063.47 5	(2-,3+)		С		М		J π : γ 's to 2- and 4-; π =U in (pol d, α).
5077 5	(≤ 3)-		D				$J\pi$: L(d,p)=1.
5112 5	2-		D		М		$J\pi$: L(d,p)=1; π =U, $J\pi \neq 0$ - in (pol d, α).
5136 5	(≤ 3)-		D				$J\pi$: L(d,p)=1.
5158 5	(≤ 3) -		D		М		$J\pi$: L(d,p)=1.
5208 5	2-		D		М		$J\pi$: L(d,p)=1; π =U, $J\pi \neq 0$ - in (pol d, α).
5870				G			
6227.0 5	(8,10)-	<1.4 ps			Ν		J π : $\gamma(\theta, \text{pol})$.
7000		-				Q	
7472.4 5	(9-,11-)				Ν		$J\pi$: $\gamma(\theta)$.
7799			С				• • •

⁴⁰K Levels (continued)

[†] For γ -ray studies, most values are from (n,γ) . Weighted averages taken for other cases. See additional levels in (n,γ) defined on the basis of two-quantum cascades (2002Va28). These levels are not listed here due to insufficient information about their decay modes and $J\pi'$ s.

[‡] Target (³⁹K) $J\pi=3/2+$ in L(d,p) arguments; target (⁴¹K) $J\pi=7/2-$ in L(d,³He). $\pi=N$ is natural parity and $\pi=U$ is unnatural parity.

[#] Lifetimes are available for 27 levels from $(\alpha, n\gamma)$; 22 levels from $(p, n\gamma)$; 17 levels from $(d, p\gamma)$; and 5 levels from $(HI, xn\gamma)$. Weighted averages from different reactions. For values from $(d, p\gamma)$ and $(p, n\gamma)$, 15% systematic uncertainty is added in quadrature. Most values are as adopted in the evaluation of 1978En02 (also 1990En08).

	$\gamma^{(40}\mathrm{K})$										
\mathbf{E}_{i}^{level}	\mathbf{J}_i^{π}	\mathbf{E}_{f}^{level}	J_f^{π}	$E_{\gamma}{}^{\dagger}$	I_{γ}^{\ddagger}	Mult. [§]	δ^{\S}	α	Comments		
29.8299	3-	0	4-	29.8299 5	100	M1		0.298	B(M1)(W.u.)=0.15. $\delta: \leq 0.07 \text{ from}$ $\gamma(\theta) \text{ in } (n,\gamma);$ but RUL favors pure M1.		
800.1427	2-	29.8299 0	3- 4-	770.3053 <i>18</i> 800.3 <i>3^a</i>	100 <0.15 ^a	M1(+E2) [E2]	0.00 1		B(M1)(W.u.)=0.172 25. B(E2)(W.u.)=0.12 .		
891.398	5-	29.8299 0	3- 4-	862.2 <i>3^a</i> 891.372 <i>21</i>	<1.4 ^{<i>a</i>} 100 <i>3</i>	[E2] M1+E2	+0.099 8		B(E2)(W.u.)=2.4 . B(E2)(W.u.)=1.4 4. B(M1)(W.u.)=0.035 6. δ : from (HLxn γ).		
1643.639	0+	800.1427 29.8299	2- 3-	843.478 <i>16</i> 1613.84 <i>4</i>	23 <i>4</i> 100.0 <i>23</i>	M2 E3			B(M2)(W.u.)=0.0035 7. B(E3)(W.u.)=1.08 7.		
1959.068	2+	800.1427 29.8299	2- 3-	1158.901 <i>20</i> 1929.34 <i>10</i>	100.0 24 22.0 24	E1(+M2) E1+M2	0.00 <i>5</i> +0.11 <i>3</i>		B(E1)(W.u.)= $0.00052 \ 9.$ B(E1)(W.u.)= $2.4 \times 10^{-5} \ 5.$ B(M2)(W.u.)= $0.36 \ 21.$		
2047.354	2-	800.1427	2-	1247.173 24	100 5	M1+E2	+0.10 3		B(E2)(W.u.)=0.27 17.		

$^{40}_{19} m K_{21}-6$

	γ ⁽⁴⁰ K) (continued)										
\mathbf{E}_{i}^{level}	\mathbf{J}_i^{π}	\mathbf{E}_{f}^{level}	J_f^π	$E_{\gamma}{}^{\dagger}$	I_{γ}^{\ddagger}	Mult. [§]	δ^{\S}	α	Comments		
		29.8299	3-	2017.53 4	78 5	M1+E2	+0.02 1		B(M1)(W.u.)=0.0132 18. B(E2)(W.u.)=0.0008 8. B(M1)(W u)=0.0025 4		
		0	4-	2047.28 4	73 5	E2			$B(E2)(W.u.)=1.66\ 24.$		
2069.809	3-	891.398	5-	1178.38 4	10 2	E2			B(E2)(W.u.)=3.3 10.		
		800.1427	2-	1269.56 5	16 2	M1+E2	-0.15 8		B(E2)(W.u.)=0.08 8. B(M1)(W.u.)=0.0018 5.		
		29.8299	3-	2039.94 4	100 4	M1+E2	+0.25 8		B(E2)(W.u.)=0.12 8. B(M1)(W.u.)=0.0026 6.		
		0	4-	2070.08 15	74 4	M1(+E2)	-0.04 6		B(M1)(W.u.)=0.0020 5.		
2103.668	1-	1643.639	0+	460.092 14 ^a	$<2.1^{a}$						
		800.1427	2-	1303.53 7	41 5	M1+E2	+0.30 6		B(E2)(W.u.)=0.8 4. B(M1)(W.u.)=0.0051 12.		
		29.8299	3-	2073.74 10	100 5	E2			B(E2)(W.u.)=2.5 5.		
2260.40	3+	29.8299	3-	2230.54 5	100.0 24	[E1]			B(E1)(W.u.)=0.00072 13.		
		0	4-	2260.11 10	23 4	[E1]			B(E1)(W.u.)=0.00016 4.		
2289.871	1 +	2103.668	1-	185.97 10 ^a	$< 5.5^{a}$						
		1959.068	2+	330.798 7	15.5 16						
		1643.639	0+	646.223 5	100 3	M1			B(M1)(W.u.)=0.56 10.		
		800.1427	2-	1489.77 5	57 4	E1(+M2)			B(E1)(W.u.)=0.00034 7.		
2290.493	3-	891.398	5-	1399.03 4	20 2	[E2]			$B(E2)(W.u.)=13.9\ 23.$		
		0	4-	2290.58 7	100 2	M1+E2	-0.8 +3-5		B(E2)(W.u.)=2.3 <i>11</i> . B(M1)(W.u.)=0.0060 <i>20</i> .		
2397.165	4-	2069.809	3-	327.23 8	10.6 15						
		29.8299	3-	2367.17 5	100 3	M1+E2	+0.25 4		B(E2)(W.u.)=1.1 6. B(M1)(W.u.)=0.030 12.		
		0	4-	2397.12 6	39 <i>3</i>	M1+E2			δ: -0.32 <i>12</i> or -2.4 5.		
2419.171	2-	2103.668	1-	315.52 8 ^a	$< 1.0^{a}$						
		2069.809	3-	349.33 4	0.86 13						
		2047.354	2-	371.792 <i>10^a</i>	$< 2.8^{a}$						
		1959.068	2+	460.092 14 ^a	$<2.2^{a}$						
		800.1427	2-	1619.00 4	100 3	M1+E2	+0.24 6		B(E2)(W.u.)=0.46 25. B(M1)(W.u.)=0.0066 17.		
		29.8299	3-	2389.18 5	22 3	M1+E2	-1.4 6		<i>δ</i> : from (n, γ). B(E2)(W.u.)=0.17 8. B(M1)(W.u.)=0.00016 11		
		0	4-	2418.69 15	10 <i>1</i>	E2			$B(E2)(W.u.)=0.11 \ 4.$ $\delta(O/Q)=+0.17$		
2542.77	7+	891.398	5-	1651.29 <i>12</i>	100.0 23	M2(+E3)	-0.01 2		28. B(E3)(W.u.)=0.16. B(M2)(W.u.)=0.176 <i>13.</i> δ: from		
		0	4	0540 6 3	10 6 5	E2(.) (4)	0 10 7		$(\alpha, n\gamma)$.		
2559		0	4-	2542.6 3	12.6.5	E3(+M4)	+0.10 /		B(E3)(W.U.)=1.89 15.		
2558	2.	0	4-	2558	100						
2575.95	2+	2260.40	3+ 2	515.52 8°°	$< 2.2^{a}$						
		2047.354	2-	528.70 14"	< 0.0"	$\mathbf{E}(\mathbf{A}, \mathbf{A}, \mathbf{A})$			D(E1)(IV) > 0.000122.10		
2625 000	0	29.8299	3- 1	2545.85 10	100	EI(+M2)			B(E1)(W.U.)=0.000133 18.		
2625.990	0-	2103.668	1-	522.319 /	100 3	(M1)			B(M1)(W.u.)=0.50 9.		
0700 070	1()	800.1427	2-	1825.77.5	45 5	(E2)			в(E2)(w.u.)=4.8 9.		
2730.372	1(-)	2419.171	2-	311.13 4	15 3						
		2103.668	1-	626.1 <i>3</i> ^{<i>a</i>}	$< 0.9^{a}$						
		1959.068	2+	771					E_{γ} : not seen in		
		1640 600	0	1006 505 10	100 0 10				$(n,\gamma).$		
		1643.639	0+	1086.707 19	100.0 10						
0.7.4.4.4.4	(2.2)	800.1427	2-	1930.2 3	95	11					
2746.91	(2,3)-	1959.068	2+	789 1	6.2 16	[E1]			B(E1)(W.u.)=0.00034 13.		
		800.1427	2-	1946.43 <i>17</i>	81						

γ ⁽⁴⁰ K) (continued)									
\mathbf{E}_{i}^{level}	\mathbf{J}_i^{π}	E_{f}^{level}	$\mathbf{J}_f^{\boldsymbol{\pi}}$	${ m E}_{\gamma}{}^{\dagger}$	Iγ [‡]	Mult. [§]	δ^{\S}	α	Comments
		29.8299	3-	2716.95 11	100 3				
		0	4-	2747.00 18	49 <i>3</i>				
2756.72	2+	2419.171	2-	337.75 12	1.9 4				
		1643.639	0+	1113.3 <i>3</i>	1.5 4	E2			B(E2)(W.u.)=15.
		800.1427	2-	1956.58 5	100 6	E1(+M2)			B(E1)(W.u.)=0.00098.
0706 644	2	29.8299	3-	2726.62 7	85.6	E1(+M2)			B(E1)(W.u.)=0.00031.
2786.644	3+	2290.493	3-	496.06 4	2.5 3	M1 + E2	0.00.7		$R(M1)(W_{11})=0.17$
		1939.008	2+	827.332 13	23 3	WIT+E2	-0.09 7		δ : from
		29.8299	3-	2756.81 7	100 3	E1(+M2)			B(E1)(W.u.)=0.00027.
		0	4-	2787.0 6	73				
2787.4	(3,4)-	2290.493	3-	496.8 5	98 20				
		891.398	5-	1896.3 5	46 20				
	(1 a)	0	4-	2787.10 25	100 20				
2807.88	(1,2)-	2047.354	2-	760.6 4	4.8 16				
		1959.068	2+	848.73^{a}	$<4.1^{a}$				
2870.01	6	800.1427	Z- 7 .	2007.71.4	100 2	$M1(\pm E2)$	10.01.2		R(M1)(Wn) = 1.4.6
2079.01	0+	2342.77	7.+	550.18 0	100 5	WII(+E2)	+0.01 2		δ : from
		891.398	5-	1987.8 6	56.5	E1(+M2)	-0.06.5		B(E1)(W.u.)=0.00010 4.
2950.8		0	4-	2950.8 6	100	()			
2985.87	(2-,3+)	2290.493	3-	695.31 8 ^a	$< 8.9^{a}$				
		1959.068	2+	1027.09 24	8 2				
		800.1427	2-	2185.70 20	100 22				
0005.05		29.8299	3-	2955.94 16	88 22				
3027.95	2-	2290.493	3-	/3/.45 3	100 10				
		2009.809	3- 2⊥	938.33 9 1068 87 3 ^a	$^{17.6} 21$ 274a				
		0	2 + 4-	3027 7 3	95 12				
3100.2	(4.5)+	891.398	5-	2208.7 7	82 18	[E1]			B(E1)(W.u.)=0.00035 14.
	()-)	0	4-	3100	100 18	[E1]			B(E1)(W.u.)=0.00015 6.
3109.721	(1,2)+	2575.93	2+	534.3 <i>3^a</i>	<3.5 ^a				
		2260.40	3+	848.7 <i>3^a</i>	$< 40^{a}$				
		2047.354	2-	1062.20 8	20.0 25				
		1959.068	2+	1150.58 18	88 10				
2120.26	2	1643.639	0+ (1.2)	1466.11 3	100 10				
5128.50	2-	2007.00	(1,2)-	320.90 37170210^{a}	$^{1.40}_{/28^{a}}$				
		2289 871	2+ 1+	838.8.5	10.4				
		29.8299	3-	3098.56 20	60 12				
		0	4-	3128.06 13	100 12				
3146.44	1	2419.171	2-	727.1 <i>3^a</i>	$< 2.0^{a}$				
		1959.068	2+	1187.45 8	91				
		1643.639	0+	1503.00 10	59 5				
0150.01		800.1427	2-	2346.05 10	100 5	D(+Q)	$+0.1\ 2$		
3153.81	(2,3)-	2756.72	2+	397.28 17	8 2				
		2397.103	4-	$750.4 0^{a}$	$< 21^{a}$				
		0	0+ 4-	3153 5 3	100.8				
3228.67	2-	2289.871	1+	938.72 6	39 4	[E1]			B(E1)(W.u.)=0.004 3.
		2103.668	1-	1124.91 6 ^a	$< 48^{a}$	r -1			()(())))))))))))
		800.1427	2-	2428.28 9	100 9				
		29.8299	3-	3198.6 <i>3</i>	59 9				
		0	4-	3229.4 4	50 6	[E2]			B(E2)(W.u.)=1.3 10.
3368.03	(2,3)-	2746.91	(2,3)-	620.96 7 ^a	$< 4.1^{a}$				
		2047.354	2-	1320.9 4	24 3				
		800.1427	2-	2568.8 4 ^u	$<2.5^{a}$				

γ ⁽⁴⁰ K) (continued)									
\mathbf{E}_{i}^{level}	\mathbf{J}_i^{π}	E_{f}^{level}	${f J}_f^{m \pi}$	${ m E_{\gamma}}^{\dagger}$	I_{γ}^{\ddagger}	Mult. [§]	δ^{\S}	α	Comments
		29.8299	3-	3336.3 10	100 3			· · ·	
		0	4-	3368.9 6	8 <i>3</i>				
3393.63	2-	1959.068	2+	1434.50 6	28 4				
		800.1427	2-	2593.32 10	100 4				
3414.34	2+	3228.67	2-	185.97 <i>10^a</i>	$< 10.2^{a}$				
		2786.644	3+	627.66 <i>3</i>	8 1				
		1643.639	0+	1771.4 5 ^a	$< 2.7^{a}$				
		800.1427	2-	2614.21 9	100 3				
		29.8299	3-	3384.66 24	34 3				
3439.144	(2+)	2625.990	0-	813.12 74	$<3.0^{a}$				
		2103.668	1-	1335.48 18	2.1 5	$\mathbf{D}(\cdot,\mathbf{O})$.0.2.2		
		1959.068	2+	1480.09 4	100 8	D(+Q)	+0.22		
		1643.639	0+	1/95.45 4	85 8				
2496 21	2	800.1427	$\frac{2}{(1,2)}$	2038.93 11	6/3				
5460.21	2-	2007.00	(1,2)+	5/0.555 6781220^{a}	14.2 10				
		2007.00	(1,2)-	$078.15 20^{\circ}$	$< 12^{\circ}$				
		2730.372	3	1105 81 7	25.3				
		2290.493	3- 2-	1438 72 4	100 11				
		800 1427	2-	$2685.6.3^{a}$	$< 110^{a}$				
3556.97	(1 - to 4 +)	3027.95	2-2-	528 76 14 ^a	$< 1.7^{a}$				
5550.77	(1-10 +1)	2756 72	$\frac{2}{2+}$	$800 \ 3 \ 3^a$	$< 6.2^{a}$				
		2575.93	2+	981.03 7^a	$< 10.0^{a}$				
		2289.871	1+	$1267.5 3^{a}$	$< 10.3^{a}$				
		2069.809	3-	1487.42 9^a	<9.5 ^a				
		2047.354	2-	1509.9 3 ^a	$< 2.2^{a}$				
		1959.068	2+	1597.88 4	28 <i>3</i>				
		29.8299	3-	3526.99 10	100 3				
3599.24	2-	2985.87	(2-,3+)	613.384 24	22 3				
		2575.93	2+	1023.21 4	27 <i>3</i>				
		2289.871	1 +	1308.9 4 ^a	$<\!\!4.5^{a}$				
		2290.493	3-	1308.9 4 ^a	$< 4.5^{a}$				
		2047.354	2-	1551.77 9	11 <i>I</i>				
		800.1427	2-	2799.30 18	100 7				
		29.8299	3-	3569.30 8	48 4				
3629.95	2-,3-	3027.95	2-	602.26 17	10.3 18				
		2397.165	4-	1232.74 3	42.5				
		2069.809	3-	1560.44 19	5.3 5				
		29.8299	3- 4	3399.02.20	38 J 100 5				
2662 720	(2, 1)	0	4-	5029.94 IJ $5212 2^{a}$	$< 0.7^{a}$				
3003.739	(3,4)+	2085 87	(2 3 +)	534.5 5 678 13 20 ^a	< 0.7				
		2200.403	(2-,3+)	1373 227 21	100.8				
		1959.068	$\frac{3^{-}}{2^{+}}$	1704 73 9	72.8				
		29 8299	3-	3633.88.9	48 4				
		0	4-	3663.32.9	34.3				
3738.48	1+	2575.93	2+	$1162.59 \ 24^a$	$< 46^{a}$				
		2260.40	3+	1478.01 6	48 4				
		2047.354	2-	1691.26 6	16 2				
		1643.639	0+	2094.61 10	71				
		800.1427	2-	2938.32 9	100 7				
3767.79	(≤ 3)-	3146.44	1	620.96 7 ^a	<43 ^a				
		3128.36	2-	640.4 <i>6</i> ^{<i>a</i>}	$< 27^{a}$				
		2786.644	3+	981.03 7 ^a	<63 ^a				
		2419.171	2-	1348.06 <i>14^a</i>	$<21^{a}$				
		800.1427	2-	2967.8 <i>3</i>	100 12				
3797.57	(1+)	3414.34	2+	383.01 18	2.5 5				
		2985.87	(2-,3+)	811.39 13	2.9 5				
		2575.93	2+	1221.71 7	8.5 10				

γ ⁽⁴⁰ K) (continued)									
\mathbf{E}_{i}^{level}	\mathbf{J}_i^{π}	\mathbf{E}_{f}^{level}	${ m J}_f^{\pi}$	${\rm E}_{\gamma}^{\dagger}$	Iγ [‡]	Mult. [§]	δ^{\S}	α	Comments
		1959.068	2+	1838.61 8	56 5				
		1643.639	0+	2153.81 4	100 5				
3821.43	2-	3486.21	2-	335.44 <i>14^a</i>	$<11^{a}$				
		2787.4	(3,4)-	1034.28 20 ^a	$<11^{a}$				
		2746.91	(2,3)-	10/4.39 9	40.5				
		2/30.3/2	1(-)	1090.9 3	10 2				
		2397.103	4-	1424.229 23	100 /				
		2290.493	3-	3791 9 3	50 7				
3840.228	(1.2+)	3109.721	(1.2)+	730.48 15	3.9.7				
00101220	(1,21)	2069.809	3-	$1771.4 5^{a}$	$< 5.0^{a}$				
		1959.068	2+	1881.20 5	80 7				
		1643.639	0+	2196.61 5	54 5				
		800.1427	2-	3040.24 13	100 5				
3868.66	2-	3414.34	2+	454.19 8	6.3 9				
		3228.67	2-	640.4 <i>6^a</i>	$< 7.1^{a}$				
		2746.91	(2,3)-	1121.77 7	18 2				
		2289.871	1+	1578.97 12	5.6 7				
		2103.668	1-	1765.24 15	375				
		800.1427	2-	3068.7 4	42 /				
		29.8299	3- 1	3838.30 /	100 /				
3887 02	(1 - 2 - 3)	0	4- 2⊥	1131 17 5	197				
5007.72	(1-,2,3)	800 1427	2+ 2-	3088 3 5	63 10				
		29.8299	3-	3857.97 11	100.8				
3923.90	(1- to 4+)	3738.48	1+	$185.97 \ 10^a$	<56 ^a				
		3228.67	2-	695.31 8 ^a	$< 20^{a}$				
		2575.93	2+	1348.06 <i>14^a</i>	$< 17^{a}$				
		2103.668	1-	1820.35 5 ^a	<128 ^a				
		1959.068	2+	1964.27 23	18 <i>3</i>				
		29.8299	3-	3895.7 11	100 52				
4020.35	(≤ 3)-	3486.21	2-	534.3 <i>3^a</i>	$<2.8^{a}$				
		3393.63	2-	$626.1 3^{a}$	$<3.1^{a}$				
		2985.87	(2-,3+)	1034.28 20 ^a	$<12^{a}$				
		2103.668	1-	1916.51 0	/88 100.8				
		2047.334	2-	3220.08.21	73.8				
4104 46	(1 - 23 -)	3663 739	(3.4)+	440 77 7	486				
4104.40	(1,2,5)	3599.24	2-	504.5.5	6.3 18				
		2985.87	(2-,3+)	1118.38 13	5.5 8				
		2756.72	2+	1348.06 <i>14^a</i>	<3.5 ^a				
		2290.493	3-	1813.94 <i>14</i>	7.3 9				
		2103.668	1-	2001.24 20	13.7 20				
		2047.354	2-	2057.07 5	14.1 16				
		800.1427	2-	3304.24 11	100 7				
4110.84	(1-,2,3)	3109.721	(1,2)+	1001.05 5	25 3				
		3027.95	2-	1082.92 /	63 8				
		2985.87	(2-,3+)	1124.91 0"	< 3 /**				
		2730.72	2+	$1334.12 \ 3$ 1820 35 5^a	$\sqrt{83^a}$				
		1643 639	0+	$2467 31 10^{a}$	$< 21^a$				
		800.1427	2-	3310.9.5	38 9				
		29.8299	3-	4080.69 12	100 7				
4149.01	(2-,3)	3393.63	2-	756.4 <i>6^a</i>	$<7^a$				
	~ / /	3228.67	2-	920.12 18 ^a	<1.5 ^a				
		2985.87	(2-,3+)	1162.59 24 ^a	$< 28^{a}$				
		2397.165	4-	1751.76 5	20.1 20				
		2290.493	3-	1858.51 5	48 5				
		2260.40	3+	1888.43 8	8.8 10				

$\underline{\gamma(^{40}\text{K})}$ (continued)									
\mathbf{E}_{i}^{level}	\mathbf{J}_i^{π}	\mathbf{E}_{f}^{level}	J_f^{π}	$E_{\gamma}{}^{\dagger}$	I_{γ}^{\ddagger}	Mult. [§]	δ^{\S}	α	Comments
		800.1427	2-	3348.91 10	100 5				
		0	4-	4148.4 <i>3</i>	12.0 16				
4180.03	(3-)	3439.144	(2+)	740.89 6	100 9				
		3228.67	2-	951.16 7	16.6 <i>19</i>				
		2786.644	3+	1393.16 8	48 6				
		2419.171	2-	1761.10 7 ^a	$< 12^{a}$				
		1959.068	2+	2221.27 11	70 9				
		891.398	5-	3286.4 8	58 15				
4213.07	(2-,3+)	3486.21	2-	$727.1 3^{a}$	$< 10^{a}$				
		3414.34	2+	$798.8 3^{u}$	$<45^{a}$				
		2069.809	3-	2143.3711	100 12				
1252 62	1	2152.039	(2, 2)	2308.8 4"	$< 24^{-1}$				
4235.02	1-	2128.26	(2,3)-	$1100.15 I_{0}$ $1124 01 6^{a}$	2.34				
		2085 87	(2 - 3 +)	1124.910 1267 5 3 ^a	< 7.0				
		2103.668	(2-,3+) 1-	2149.93.5	25 1 23				
		2105.008	3_	2149.93 3	23.1 23				
		2007.354	2-	$2105.70 \ 20^{a}$ $2206 \ 35 \ 10^{a}$	$< 44^{a}$				
		1643.639	$\frac{2}{0+}$	2609.98 9	83.7				
		800.1427	2-	3452.2 10	100 6				
		29.8299	3-	4223.66 7	49 <i>3</i>				
4280.52	2-	2575.93	2+	1704.70 20	85 44				
		2047.354	2-	2233.0 4	43 <i>43</i>				
		800.1427	2-	3480.6 5	35 9				
		29.8299	3-	4249.5 4	32 9				
		0	4-	4280.35 22	100 11				
4365.6	(8+)	2879.01	6+	1486.3 5	19 6	[E2]			B(E2)(W.u.)=4.3 22.
	_	2542.77	7+	1822.9 3	100 6				
4384.0	0+	2730.372	1(-)	1654	32.4				
1205.00	(0.1.0)	2289.871	1+	2094	100 4				
4395.88	(0,1,2)-	3/38.48	1+	657.393	33 3				
		3128.30	2- 1()	1207.5 5"	<44*				
		2730.372	1(-)	1005.45 4	100 13				
4410.36	$(2 \ 3 \ 4 \downarrow)$	2047.334	(3.4)	2340.12 9 756 1 6 ^a	$^{100}13$				
4417.50	(2-,3,4+)	3556.97	$(3, 4)^+$	862 2 3 ^a	$< 3.2^{a}$				
		3153.81	$(1^{-1} (0^{-1} + 1^{-1})^{-1})$	1265 54 9	53.5				
		3109.721	(1,2)+	$1308.9 4^{a}$	$< 12^{a}$				
		2575.93	2+	1843.33 9	17.6 19				
		2397.165	4-	2022.32 17	45 5				
		29.8299	3-	4389.32 18	100 8				
4472.99	(2,3)-	3439.144	(2+)	1034.28 20 ^a	$< 10^{a}$				
		3393.63	2-	1079.44 13	25 <i>3</i>				
		2985.87	(2-,3+)	1487.42 9 ^a	$<\!\!24^{a}$				
		2746.91	(2,3)-	1725.68 <i>17^a</i>	$< 8.2^{a}$				
		2625.990	0-	1846.72 <i>6^a</i>	$<\!26^{a}$				
		2069.809	3-	2403.04 9	30 <i>3</i>				
		0	4-	4472.80 11	100 8				
4537.06	2-	3738.48	1+	798.8 3 ^a	$< 5.4^{a}$				
		3228.67	2-	1308.94^{a}	<3.8 ^a				
		3109.721	(1,2)+	1427.45 18	1.9 3				
		2313.93	∠+ 3	1901.11 0 2467 21 10a	15.3 14				
		2009.809	3- 2+	2407.31 10"	< 5.9 28 3				
		800 1/27	∠⊤ 2_	2737 01 10	20 J 100 K				
		29 8299	2- 3-	4506 96 7	68 5				
4744.093	(2+)	4180.03	(3-)	563.86 6	7.5 10				
	<u>(</u> = ·)	4104.46	(1-,2,3-)	640.4 <i>6^a</i>	$< 4.5^{a}$				
		3840.228	(1,2+)	903.878 23	15.3 15				

				<u>/(II) (0</u>	Jittillucu)				
\mathbf{E}_{i}^{level}	J_i^{π}	\mathbf{E}_{f}^{level}	$\mathbf{J}_f^{\boldsymbol{\pi}}$	$E_{\gamma}{}^{\dagger}$	I_{γ}^{\ddagger}	Mult. [§]	$\delta^{\$}$	α	Comments
		3797.57	(1+)	946.29 8	3.8.5				
		3599.24	2-	1144.7.5	8.3				
		2807.88	(1,2)-	1935.7 <i>3</i>	12.8 23				
		2730.372	1(-)	2013.90 20	17 <i>3</i>				
		2575.93	2+	2168.16 4	18.3 <i>19</i>				
		2289.871	1+	2454.7 <i>3</i>	2.5 4				
		2260.40	3+	2483.8 <i>3</i>	3.0 8				
		1959.068	2+	2784.4 4	23 5				
		1643.639	0+	3100.42 20	38 14				
		800.1427	2-	3943.81 6	100 5				
4788.65	(1+)	4472.99	(2,3)-	315.52 8 ^a	$< 22^{a}$				
		4253.62	1-	534.3 <i>3^a</i>	$< 3.2^{a}$				
		4149.01	(2-,3)	640.4 6 ^a	$<\!16^{a}$				
		4110.84	(1-,2,3)	678.13 20 ^a	$< 10^{a}$				
		3868.66	2-	920.12 <i>18^a</i>	<6.1 ^a				
		3663.739	(3,4)+	1124.9 6 ^a	<43 ^a				
		3027.95	2-	1761.10 174	$<11^{a}$				
		2756.72	2+	2031.6 3	93 14				
		2625.990	0-	2162.16 1/	14.6 18				
		2260.40	3+	2528.44 11	50.5				
		2103.668	1-	2685.6 3"	<86				
1072 55	(2,2)	1043.039	0+	3144.30 19	100 II				
4872.33	(2,5)-	4357.00	(2 3)	555.44 <i>14</i> 1718 68 <i>1</i>	$< 10^{\circ}$				
		3146 44	(2,3)-	1710.084 17256817^{a}	$\sim 13^{a}$				
		2756 72	$\frac{1}{2+}$	2115 77 14	12316				
		1959.068	$2\pm$	2012.6.3	56.8				
		29 8299	3-	4842 8 4	29.5				
		0	4-	4872.47 14	100.8				
4875.6	9+	4365.6	(8+)	509.4 10	56 17				
107010		2542.77	7+	2332.8 4	100 11	E2			B(E2)(W.u.)=0.92.
4992.94	(23+)	4180.03	(3-)	813.12 7 ^a	$< 14^{a}$				
		3923.90	(1 - to 4 +)	1068.87 <i>3^a</i>	$< 121^{a}$				
		3146.44	1	1846.72 6 ^a	$<32^{a}$				
		2786.644	3+	2206.35 10 ^a	$< 227^{a}$				
		2290.493	3-	2702.60 16	85 <i>9</i>				
		2069.809	3-	2922.91 20	100 9				
		29.8299	3-	4962.2 4	32 6				
5063.47	(2-,3+)	3368.03	(2,3)-	1695.44 8	32 4				
		3109.721	(1,2)+	1953.74 6	100 10				
		2419.171	2-	2644.0 <i>3</i>	84 <i>13</i>				
		0	4-	5062.9 4	23 3				
6227.0	(8,10)-	4875.6	9+	1351.37 18	100 8	E1(+M2)	-0.07 5		B(E1)(W.u.)=0.00016
		4365.6	(8+)	1861	<5				
	(0. d.d.)	2542.77	7+	3684	<2				
7472.4	(9-,11-)	6227.0	(8,10)-	1245.42 22	100	D+Q	+0.13 7		

 $\gamma(^{40}K)$ (continued)

[†] Primarily from (n,γ) . Other values are either from individual reactions or weighted averages when quoted precision is comparable.

¹ Weighted averages taken when values are available from different datasets. [§] Primarily from $\gamma(\theta)$ and $\gamma(\text{pol})$ data in $(p,n\gamma)$. A few values are also available from (HI,xn γ), (n,γ) and $(\alpha,n\gamma)$. ^{*a*} Multiply placed with undivided intensity.
37 Cl(α ,n γ) 1973Da18,1971Ja15,1971We09

1973Da18, 1974Th07: E=6.90-8.00 MeV. Measured Eγ, Iγ, γγ. γ(θ), γ(lin pol) for γ rays from 2291, 2543, 2787 and 2879 levels were measured by 1974Th07. 1971Ja15: E=6.25, 7.00, 8.00 MeV. Measured γ , $\gamma\gamma$, $\gamma(\theta)$, lifetimes by DSAM.

1971We09, 1970Ba34: E=6.0-7.4 MeV. Measured lifetimes by DSAM.

Others:.

1974Br12: E=5.0 MeV. Measured $\gamma(\theta, H, t)$, lifetime by pulsed beam for 30-keV level. 1973Gr19: E=8.5, 9.5 MeV. Measured lifetime for 2542 level by recoil-distance Doppler shift method.

1969Ka18: E≈threshold. Measured lifetimes by DSAM.

			⁴⁰ K Levels
E(level)	$\mathrm{J}^{\pi\dagger}$	T _{1/2} #	Comments
0	4-		
29.6 10	3-	4.30 ns 6	g=-0.43 3 (1974Br12). T _{1/2} : γ (t) (1974Br12).
800.2 10	2-	0.28 ps 10 [@]	-/- ·
891.0 10	5-	0.80 ps 18 [@]	
1645.0 10	0+	-	
1958.8 5	2+	0.70 ps 18 [@]	
2047.0 10	2-	0.37 ps 11 [@]	
2069.7 5	3-	0.43 ps 12 [@]	
2102.9 6	1-	0.57 ps 14 [@]	
2260.6 10	3+	59 fs 17 [@]	
2290.0 6	1+	76 fs 21 [@]	
2291.1 2	3-	0.15 ps 3 [@]	J π : 3- is preferred by $\gamma(\theta)$ and $\gamma(\ln \text{ pol})$ data of 1974Th07; 4+ is not completely ruled out by these data.
2397.9 <i>3</i>	4-	35 fs 14 [@]	
2419.4 4	2-	0.46 ps +30-18	$T_{1/2}$: other: >1.0 ps (1971We09).
2542.8 4	7+ [‡]	1.04 ns 14	$T_{1/2}$: from 1973Gr19. Other: 2.1 ps to 35 ns (1971Ja15).
2575.6 5	2+	78 fs 21 [@]	-,-
2626.0 6	0-	0.21 ps 7 [@]	
2730.9 8	1	<50 fs	
2747.6 <i>3</i>	(2,3)-	0.19 ps 11	
2756.2 5	2+	<21 fs	
2786.6 5	3+ [‡]		
2787.4 <i>3</i>	(3,4)-	55 fs 20	
2808.2 6	(1,2)-	0.10 ps 7	
2879.4 5	6+‡	0.27 ps 10	J π : from $\gamma(\text{lin pol})$, 6+ is favored (1974Th07).
2950.8 6		35 fs 21	
2986.6 8	(2-,3+)	69 fs 28	
3028.1 4	2-	<50 fs	
3100.2 7	(4,5)+	69 fs 21	
3128.4 8	2-	<21 ts	
3146.7 6	1	-01.0	
3135.1 ð	(2,3)-	<21 fs	
3230.0 /	2-		

[†] From Adopted Levels.
[‡] From γ(θ) and/or γ(lin pol) (1974Th07).
[#] From DSAM (1971Ja15), unless otherwise stated.

[@] From DSAM, weighted average of values from 1971Ja15 and 1971We09

					γ ⁴⁰	K)		
\mathbf{E}_{i}^{level}	\mathbf{J}_i^{π}	\mathbf{E}_{f}^{level}	\mathbf{J}_f^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	Mult. [‡]	δ^{\ddagger}	Comments
29.6	3-	0	4-	29.6	100			
800.2	2-	29.6	3-	771	100			
891.0	5-	0	4-	891	100			

					/(11) (0	Sintillaed)		
\mathbf{E}_{i}^{level}	\mathbf{J}_i^{π}	\mathbf{E}_{f}^{level}	\mathbf{J}_f^{π}	${\rm E}_{\gamma}^{\dagger}$	I_{γ}^{\dagger}	Mult. [‡]	δ^{\ddagger}	Comments
1645.0	0+	800.2	2-	845 ^a	20 5 ^a			$I\gamma(845)/I\gamma(1615)=15 3/85$
		29.6	3-	1615 ^a	80 5 ^a			5 (1)/1 ((0)).
1958.8	2+	800.2	2-	1158.9 2	82 2			
		29.6	3-	1929.6 2	18 2			$I\gamma(1930)/I\gamma(1159)=22 5/78$ 5 (1971Ja15); 19 4/81 4 (1971We09).
2047.0	2-	800.2	2-	1247 ^a	40 5 ^a			, , , , , , , , , , , , , , , , , , ,
		29.6	3-	2017 ^a	35 5 ^a			
2060 7	3	0	4- 5	2047 ^a	25 5 ^a			$I\gamma(2047)/I\gamma(2017)/I\gamma(1247)=28$ 4/33 4/39 4 (1971We09).
2009.7	5-	891.0	5-	1176.4 0	51			I/(11/3)/I/(1209)/I/(2041)/I/(2070)=2 I/8 2/56 5/34 5 (1971Ja15); 6 2/8 2/46 8/40 8 (1971We09)
		800.2	2-	1268.9 6	51			
		29.6	3-	2041.0 9	47 <i>3</i>			
		0	4-	2070	45 <i>3</i>			
2102.9	1-	800.2	2-	1303.6 5	22 4			$I\gamma(1304)/I\gamma(2073)=32\ 5/68$ 5 (1971Ja15); 33 8/67 8 (1971We09).
		29.6	3-	2073.1 4	78 4			
2260.6	3+	29.6	3-	2231 ^a	85 <i>3</i> ^a			
		0	4-	2261 ^a	15 <i>3</i> ^{<i>a</i>}			$I\gamma(2261)/I\gamma(2231)=19 4/81$ 4 (1971We09).
2290.0	1+	1050.0	2	224	<2			
		1958.8	2+	331 646 2 4	8 Z 50 A			
		800 2	0+ 2-	1490 3 5	33 3			$I_{\gamma}(1490)/I_{\gamma}(646) = 38.5/62$
		000.2	2	1190.00	55 5			5 (1971Ja15); 37 4/63 4 (1971We09).
2291.1	3-	891.0	5-	1400.0 4	19 <i>3</i>			$I\gamma(1400)/I\gamma(2291)=15\ 2/85$ 2 (1971Ja15).
		0	4-	2290.8 2	81 3	(M1+E2)	-0.9 4	δ: for J=3 $δ$ =-0.02 9 for J=4+. A ₂ =+0.40 1, A ₄ =-0.09 2,
								$POL=-0.67 \ 8 \ (19741 \ 1007).$
2397.9	4-	29.6	3-	2367.9.3	70 4			17. 100 (1971 (1009)).
		0	4-	2398.1 3	30 4			$I\gamma(2398)/I\gamma(2368)=35$
								10/65 10 (1971Ja15); 27 4/73 4 (1971We09).
2419.4	2-	1958.8	2+	461	<2			
		800.2	2-	1619.6 2	15 2			Let (2200) /Let (1(20) 10 5/00
		29.0	3-	2389.7 5	15 2			$\Gamma\gamma(2390)/\Gamma\gamma(1620)=10/5/90$ 5 (1971Ja15). $\Gamma\gamma(2419)/\Gamma\gamma(2389)/\Gamma\gamma(1620)=7$ 2/20/4/73/4 (1971We09).
		0	4-	2419.4 5	61			
2542.8	7+	891.0	5-	1651.5 5	88 2	M2(+E3)	0.00 3	I_{γ} : 100 (1971Ja15). A ₂ =+0.56 4, A ₄ =-0.27 4,
		0	4-	2542 4 10	12.2			$POL=-0.68 \ 8 \ (19/41 \ mod n)$.
2575.6	2+	29.6	3-	2546.1 2	100			
2626.0	0-	2102.9	1-	523.3 5	70 <i>3</i>			
		1958.8	2+	667	<5			
		800.2	2-	1826.4 2	30 <i>3</i>			Ιγ(1826)/Ιγ(523)=33 5/67
0720.0	1	0000 0		441	10			5 (1971We09); <20/100 (1971Ja15).
2730.9	1	2290.0	1+	441 1086 0 6	<12			I + 100 (10711-15)
		1043.0	0+	1000.9 0	74 4			17. 100 (19/1Ja13).

 γ (⁴⁰K) (continued)

\mathbf{E}_{i}^{level}	J_i^{π}	\mathbf{E}_{f}^{level}	J_f^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	Mult. [‡]	δ‡	Comments
		800.2	2-	1931	64			
2747.6	(2,3)-	2069.7	3-	678	<3			
		1958.8	2+	789 1	4 1			$I\gamma(789)/I\gamma(2718)/I\gamma(2748)=10$ 3/60 10/30 10 (19711-15)
		29.6	3-	2717.7 2	64 5			5/00 10/50 10 (19/15415).
		0	4-	2747.7 3	32 <i>3</i>			
2756.2	2+	800.2	2-	1956.0 2	64 5			
		29.6	3-	2727.3 3	34 <i>3</i>			$I\gamma(2727)/I\gamma(1956)=38$ 12/62 12 (19711a15)
2786.6	3+	1958.8	2+	827.60 25	22 3			$I\gamma(828)/I\gamma(2757)=19\ 5/27$ 8 (19711a15)
		29.6	3-	2757.2 3	78 <i>3</i>	E1(+M2)	-0.09 +22-5	$A_2=+0.35 2, A_4=-0.01 2.$ POL=-1.02 20 (1974Th07).
2787.4	(3,4)-	2291.1	3-	496.8 5	40 8			× ,
		891.0	5-	1896.3 5	198			$I\gamma(1896)/I\gamma(496)/I\gamma(2787)=12$ 1/19 2/23 2 (1971Ja15).
		0	4-	2787.10 25	41 8			(i) i) <u>i</u> ,
2808.2	(1,2)-	800.2	2-	2008.5 2	100			
2879.4	6+	2542.8	7+	336.4 4	62 4			
2950.8		891.0	5-	1987.8 7 2950 8 6	38 <i>4</i>	D(+Q)	-0.06 +4-5	A ₂ =-0.33 5, A ₄ =-0.10 6, POL=+0.32 26 (1974Th07). $I\gamma(1988)/I\gamma(336)=40$ 5/60 5 (1971Ja15).
2086.6	$(2 \ 3 \downarrow)$	800.2	2	2186 2 10	15 10			$I_{0}(2186)/I_{0}(2058) = 65$
2980.0	(2-,3+)	20.6	2-	2059 1 6	15 10			<i>35/35 35</i> (1971Ja15).
2020.1	2	29.0	3-	2958.1 0	85 10			
5028.1	2-	1059.9	3- 2-	10(2) 2 5	25 4			
		1958.8	2+ 4	1008.2.5	54 S			I = 100 (10711 - 15)
2100.2	(4.5)	0	4-	3028.8 8	23 4			I_{γ} : 100 (19/1Ja15).
3100.2	(4,5)+	891.0	5-	2208.7 7	45 10			$1\gamma(2209)/1\gamma(3100)=35 //65$ 7 (1971Ja15).
	_	0	4-	3100	55 10			
3128.4	2-	2047.0	2-	1081	<10			
		29.6	3-	3099	53 10			
		0	4-	3128.4 8	47 10			I _γ : 100 (1971Ja15).
3146.7	1	1645.0	0+	1503.1 4	33 5			
		800.2	2-	2346.8 2	67 5			
3155.1	(2,3)-	0	4-	3155.1 8	100			
3230.0	2-	800.2	2-	2428.4 10	<16			
		29.6	3-	3201.1 10	75 6			
		0	4-	3229.4 10	25 6			

[†] From 1973Da18, unless stated otherwise. [‡] From $\gamma(\theta)$, $\gamma(\text{lin pol})$ data of 1974Th07. ^{*a*} From 1971Ja15.

³⁸Ar(α ,d) 1976De24

1976De24: E=34 MeV. Measured $\sigma(\theta)$, FWHM \approx 100 keV, DWBA analysis. Absolute cross sections are accurate to 20%.

	⁴⁰ K Levels				
$E(level)^{\dagger}$	J^{π}	L	$d\sigma/d\Omega \ (\mu b/sr)^{\ddagger}$		
0		(3)	60		
800		(1)	70		
891		5	200		
2070		3	45		
2290		3	65		
2543		6	1000		
2787		4	700		
3094 25		4	150		
3445 25		4	120		
3753 25		4	330		
3908 25			300		

 † Rounded off values from Adopted Levels for levels below 3000. ‡ At 20° (c.m. system).

39 K(n, γ),(pol n, γ) E=thermal 1984Vo01,1972Op01,1970Jo04

1984Vo01: (n, γ) . Measured E γ , I γ with Grenoble curved-crystal spectrometer and a pair spectrometer. A total of 427 γ 's reported, out of which 302 were placed amongst 63 levels, with 38 γ 's doubly or multiply assigned.

1972Op01: (n, γ). Measured E γ , I γ , γ ; a total of 222 γ 's reported out of which 187 γ 's were associated with 56 levels. γ coin data involved about 25 transitions.

1970Jo04: (n, γ). Measured E γ , I γ , $\gamma\gamma$; a total of 252 γ 's reported out of which 202 γ 's were associated with 56 levels. $\gamma\gamma$ coin data involved 62 transitions. 2002Va28: measured $\gamma \gamma$ coin, two-quantum cascades. A total of 70 intermediate levels were found from 96 cascades.

Others:.

2003MoZU, 2002Re13: compilations.

2001Ac04: (n, γ). Measured E γ , I γ . Deduced k₀ factor.

1988Se06: (n, γ) . Measured $\gamma(\theta)$.

1974Op01, 1972Op02, 1969Ab03: (pol n, γ). Measured γ (circ pol) of capture γ 's to nine levels; deduced interference in capture state. 1974IsZX: (n, γ). Measured E γ , I γ .

1972Se19: measured relative intensities for six secondary γ 's and nine primary γ 's.

1970Ei03: (pol n, γ). Measured γ (circ pol) of capture γ 's to 30-keV level. 1969Bo04: measured γ (t) for 30-keV level.

1966Ke07: (n, γ). Measured E γ , I γ .

1965Ru06: (n, γ) . Measured E γ , I γ , natural target.

1956Br42, 1956Ad49, 1953Ba76, 1952Ki32: (n, γ). Measured E γ , I γ .

The γ -ray placements and the resulting level scheme is from 1984Vo01 which is based on earlier (n, γ) studies of 1972Op01 and 1970Jo04 combined with other reactions. However, based on a better $E\gamma$ precision achieved in the work of 1984Vo01, placements for several γ rays are different than proposed by 1970Jo04 and/or 1972Op01.

The following levels reported by 1972Op01 and/or 1970Jo04 have been omitted since these have not been confirmed in the work of 1984Vo01 (either the γ 's decaying from these levels were not observed or were placed differently based on better precision in 1984Vo01): 4586.8, 4665.8 from 1972Op01; 2457.5, 2557.9, 2978.6, 3378.3, 3875.0, 4273.3, 4579.6 from 1970Jo04; 2947.5, 3711.1, 3902.1, 4464.6, 4806.9, 4908.5 from 1972Op01 and 1970Jo04.

E(level) [†]	$J^{\pi \ddagger}$	$T_{1/2}$	Comments
0.0	4-		
29.8299 5	3-#	4.24 ns 9	$T_{1/2}$: from $\gamma (t)$ (1969Bo04).
521.7 <i>10</i> ^{&}			
800.1427 19	2-#		
891.398 <i>18</i>	5-		
1084.3 10 ^{&}			
1173.4 <i>16</i> ^{&}			
1228.2 5 ^{&}			
1248.4 3 ^{&}			
1330.5 <i>19</i> °			
1409.2 <i>17</i> [∞]			
1520.7 <i>11</i> [∞]			
1556.6 22 [∞]	0		
1643.639 11	0+		
18//./ 8~	2		
2047 354 16	2+ 2 #		
2047.334 10	2- 3_@		
2009.809.20 2076 1.7 ^{&}	5-		
2103 668 24	1-@		$I\pi$: (1 2 3)- (1974Op()1)
2260.40 4	3+		u. (1,2,3) (1) (10pol).
2271.1 10 ^{&}			
2289.871 11	1+		
2290.493 20	3-		
2397.165 25	4-		
2419.171 <i>21</i>	2-#		

$^{40}_{19} m K_{21}$ -17

E(level) [†]	J ^{π‡}	T _{1/2}	Comments
2422.1 16 ^{&}			
2575.93 3	2+		$J\pi$: 2+ (1984Vo01).
2618.1 <i>12</i> ^{&}			
2625.990 25	0-		
2730.372 18	1		
2746.91 5	(2,3)-		
2756.72 3	2+		$J\pi$: 2+,(3) (1984Vo01).
2786.644 16	3+		
2807.88 4	(1,2)-		
2925.1 10 ^{&}			
2939.2 8 ^{&}			
2946.2 <i>11</i> ^{&}			
2985.87 4	(2-,3+)		
3000.0 4 ^{&}			
3027.95 <i>3</i>	2-		
3063.5 <i>11</i> ^{&}			
3093.8 7 ^{&}			
3109.721 23	(1,2)+		
3128.36 8	2-		$J\pi$: (2-,3,4+) (1984Vo01).
$3140.7.2^{\&}$			
3146.44 5	1		
3153.81 6	(2.3)-		$J\pi$: 3- (1984Vo01).
3228.67 5	2-		
3305.2 12 ^{&}			
3326.6.6 ^{&}			
3368.03.8	(2, 3)-		
3373 4 15&	(2,3)		
3393.63.5	2-		
3414 34 3	2- 2+		
3428.0.7&	21		
2420.144.25	(2))#		I_{π} : (1.2) (10740m01) 1.2 (1094Va01)
3439.144 23	(2+)		$J\pi$. (1,2) (19740p01), 1-,2+ (1964 v001).
25177 11&	2-		
2529 4 08			
2556 07 1	$(1 t_0 (1))$		
5550.97 4	(1 - 10 + 4)		
35/8.3 10	2		
3599.24 3	2-		I_{π} (2.2) (1094 V_{0} 01)
3029.93 4	2-,3-		JW. (2,3)- (1984v001).
3655.6 3	(2, 4)		I_{-1} (2, 2, 4, 1) (1094 V_{-} 0.1)
3003.739 23	(3,4)+		$J\pi$: (2-,3,4+) (1984 v001).
3709.5 <i>13</i> ∞			
3719.6 <i>12</i> ^{cc}	1		
3738.48 3	1+		$J\pi$: 1+,(2-,3+) (1984Vo01).
3/6/./9/13	(≤ 3) -		$J\pi$: (1-,2,3) (1984 V001).
3/9/.5/ 3	1+		
3807.8 11			
3821.43 3	2-		
3840.228 24	(1,2+)		
3856.4 6 ^a			
3868.66 4	2-		$J\pi$: 3-,(2-) (1984Vo01).
3887.92 5	(1-,2,3)		
3923.90 18	(1- to 4+)		
3933.0 <i>15</i> ^{<i>\phi</i>}			
4020.35 4	(≤ 3) -		
4058.3 <i>10</i> ^{<i>\phi</i>}			
4104.46 <i>4</i>	(1-,2,3-)		

⁴⁰K Levels (continued)

E(level) [†]	$\mathrm{J}^{\pi\ddagger}$	T _{1/2}	Comments
4110.84 3	(12.3)		
4149.01 3	(23)		
4165.4 7 ^{&}	()-)		
4180.03 <i>3</i>	(3-)		
4213.07 9	(2-,3+)		
4253.62 4	1-@		J π : (1,2)- (1974Op01).
4280.52 8	2-		
4395.88 <i>3</i>	(0,1,2)-		$J\pi$: (\leq 3)- (1984Vo01).
4419.36 7	(2-,3,4+)		
4472.99 6	(2,3)-		
4537.06 4	2-		
4744.093 24	(2+)		
4788.65 8	(1+)		
4872.55 6	(2,3)-		
4906.9 <i>13</i> &			
4992.94 9	(2-,3+)		Jπ: (1-:4+) (1984Vo01).
5063.47 5	(2-,3+)		
6311 <i>3</i> ^{&}			
7799.534 14	1+,2+		E(level): S(n)=7799.51 7 (2003Au03).
			J π : s-wave capture in ³⁹ K (g.s. J π =3/2)+. From $\gamma(\theta)$, an incoherent superposition of 1+ and 2+ is allowed, while from $\gamma(\text{circ pol})$ superposition is coherent, with either constructive or destructive interference.

⁴⁰K Levels (continued)

[†] From least-squares fit to $E\gamma$'s. 38 γ rays which are doubly or multiply placed were not used in the least-squares procedure. Out of 263 γ rays used in the fit, five γ rays lie outside 3 σ 's and and 34 γ rays outside 2 σ 's.

[‡] From Adopted Levels, unless otherwise stated.

[#] From γ (circ pol) (1974Op01) and $\gamma(\theta)$ (1988Se06).

[@] From γ (circ pol) (1974Op01) and arguments in Adopted Levels.

& From 2002Va28 based on two-quantum cascades. This level is not included in the Adopted Levels due to insufficient information about its decay mode and $J\pi$.

$\gamma(^{40}K)$

The following γ 's reported by 1972Op01 and/or 1970Jo04 have been omitted since these are not confirmed in the highresolution work of 1984Vo01: 246.9, 380.2, 1582.9, 1674.1, 2102.1, 2294.9, 3120.5, 3339.1, 3447.0, 4110.7, 4299.9, 4452.6, 4769.5, 4908.6, 5495.9 and 5840.9 from 1972Op01; 243.6, 284.6, 291.5, 297.5, 300.3, 368.3, 387.1, 421.6, 432.6, 475.9, 485.3, 608.6, 701.8, 720.7, 734.6, 1008.3, 1139.1, 1261.1, 1410.6, 1468.5, 1583.6, 1635.1, 1646.0, 1659.0, 1675.8, 1747.8, 2105.2, 2136.6, 2304.1, 2620.2, 2860.3, 2978.6, 3419.2, 3448.7, 3473.3, 3767.6, 3794.4, 3829.1, 4111.4, 4122.3, 4239.7, 4638.3, 4770.4, 5133.7, 5341.5, 5366.5, 5461.3, 5489.3 and 5841.8 from 1970Jo04. Observed deexcitation intensity from the capture state is 84% of g.s. feeding.

 $\gamma\gamma$ coin information is from 1970Jo04 as shown by 1984Vo01.

Level	$\gamma (\theta) $ γ_1	results (γ) γ_2	(1988Se06) A ₂	\mathtt{A}_4	A ₂
1644	843	770	-0.04 7	+0.09 10	(if A4=0) -0.016
1959	1159	770	-0.072 22	+0.03 3	-0.06 20
2047	1247	770	-0.09 4	+0.05 6	-0.084
2104	1304	770	+0.18 6	-0.14 8	+0.146
2419	1619	770	-0.09 6	+0.09 8	-0.065
2626	522 (130-	4) 770	-0.10 15	-0.18 21	-0.16 <i>13</i> a
2626	522	1304	-0.03 21	+0.5 3	+0.1019

	2626	52	2	2074	-(0.12 <i>15</i>	-0.03 22	-0.13	14
	2808	20	08	770	_	0.09 10	+0.18 14	-0.0	39
	3439	148	0	1159	+(0.05 <i>11</i>	+0.04 16	+0.06	510
	3439	1480	(1159)	770	+0	.07 11	-0.05 16	+0.051	0 a
	7800	436	0	1480	+().34 <i>16</i>	-0.16 21	+0.30	16
	7800	517	3	522	+(0.04 <i>13</i>	-0.10 18	+0.01	.12
	7800	53	30	1619	+	0.32 5	+0.01 6	+0.3	25
	7800	5380	(1619)	770	-0.	.01 3	0.00 5	-0.013	a
	7800	55	09	646	+	0.17 7	+0.03 9	+0.1	86
	7800	56	95	1304	-	0.21 9	+0.14 14	-0.1	78
	7800	56	95	2074	+	0.09 7	0.00 9	+0.0	96
	7800	57	52	1247	-	0.13 7	-0.02 10	-0.1	46
	7800	5752	(1247)	770	+0	.04 8	-0.11 //	0.007	'a
	7800	575	2	2018	-(0.1 4	+0.1 3	+0.06	521
	7800	575	2	2047	-(0.19 <i>14</i>	-0.01 20	-0.20	12
	7800	69	99	770	-	0.06 5	0.00 8	-0.0	6 <i>5</i>
	a: tr	iple $\gamma(\gamma)\gamma$	(θ)						
	γ(cir γ ₁	c pol), γ Intermedia evel	(θ) resi te	ults (R	19740 _Γ γ ₂	001) for Fin level	primary translate A_2	ansitions F	;
	3546 4360 5380	4254 3439 2419	+0.49 +0.98 0.00	10 9 0 3	1619	800	+0.19 2	0.96 2d	L
	5509 5695 5695 5729 5729 5729 2 5729 2 5752	2290 2104 2104 2070 2070 070 2047	+0.70 -0.41 -0.46 +0.08	6 4 5 5 117 8 <i>3</i>	2074 304 2070 040 '8 2047	30 800 30 800 0	+0.05 2 -0.13 2 +0.07 6 -0.20 2 -0.09 2	1 0.02 <i>I</i> d	a I
	5752 5752 6999	2047 2047 801	+0.63 6	20 12	017 247	30 800	+0.08 2 -0.21 <i>I</i> 0.0	09 <i>4</i> c,09	91 4
	7769	30	-0.50	3е				1	
	R: γ(cin F: fra c: const e: -0.4	rc pol) coo ction of 2 ructive in 48 <i>16</i> (1970	efficien + compon terferen DEi03) 	t nent i nce. d	n ⁴⁰ K l: dest	capture s tructive	state interferen	ce	
\mathbf{E}_{i}^{level}	\mathbf{J}_i^{π}	\mathbf{E}_{f}^{level}	J_f^{π}		E_{γ}^{\dagger}	I	γ^{\dagger} N	/ult.	δ^{\ddagger}
Unplaced					444.43	8 0	0.037 5		

			<u>γ(</u>	⁴⁰ K) (continued)				
\mathbf{E}_{i}^{level}	J_i^π	\mathbf{E}_{f}^{level}	J_f^π	$E_{\gamma}{}^{\dagger}$	$\mathrm{I}_{\gamma}^{\dagger}$	Mult.	δ^{\ddagger}	
				554.741 23	0.133 17			-
				558.73 10	0.044 7			
				569.98 7	0.062 8			
				616.43 6	0.096 11			
				666.91 5	0.057 6			
				783.82 4	0.103 11			
				/91.06 4	0.50 5			
				809.97 4 015 28 16	$0.143 I_{3}$			
				915.56 10	0.0173 0.0194			
				971 74 19	$0.019 \neq$ 0.028 5			
				976.85 6	0.109 12			
				1018.11 4	0.141 15			
				1031.1 <i>3</i>	0.020 5			
				1043.58 12	0.023 3			
				1058.03 4	0.112 12			
				1096.72 7	0.101 11			
				1110.50 7	0.114 12			
				1172.20 11	0.042 5			
				1201.86 5	0.106 11			
				1204.36 10	0.046 6			
				1213.33 8	0.047 5			
				1219.47 11	0.041 5			
				1255 29 9	0.107 12			
				1283.3 3	0.051 16			
				1331.58 4	0.152 16			
				1365.06 24	0.066 12			
				1377.16 11	0.122 16			
				1402.73 9	0.125 14			
				1416.67 9	0.048 6			
				1419.01 3	0.233 24			
				1449.98 6	0.047 5			
				1452.39 12	0.0200 20			
				1454.90 10	0.025 3			
				1400.81 10	0.049 0			
				1473.00 10	0.030 5			
				1517.10.9	0.122 14			
				1521.02 21	0.059 9			
				1536.84 5	0.26 3			
				1562.78 7	0.31 3			
				1566.21 7	0.155 17			
				1625.67 14	0.32 4			
				1667.69 5	0.102 11			
				1680.8 4	0.010 3			
				1702.35 3	0.33 3			
				1710.19 24	0.023 4			
				1811 2 3	0.030 5			
				1832.01.5	0.117 12			
				1854.99.5	0.202 21			
				1892.0 3	0.037 5			
				1901.6 4	0.029 5			
				1910.70 6	0.171 18			
				1994.08 15	0.188 24			
				2014.24 11	0.201 23			
				2067.53 11	0.28 3			
				2122.02 5	0.121 13			

			<u> </u>	⁴⁰ K) (continued)			
\mathbf{E}_{i}^{level}	J_i^π	\mathbf{E}_{f}^{level}	J_f^π	${\rm E}_{\gamma}^{\dagger}$	$\mathrm{I}_{\gamma}{}^{\dagger}$	Mult.	δ^{\ddagger}
				2131.66 17	0.036 5		
				2173.67 8	0.094 10		
				2204.08 10	0.34 4		
				2271.19 12	0.085 10		
				2310.70 5	0.51 5		
				2322.75 13	0.127 14		
				2330.16 10	0.28 3		
				2375.74 5	0.102 11		
				2373.83 3	0.113 I2 0.141 I5		
				2304.99 11	0.141 13		
				2416.06.11	0.100 12		
				2424.66 5	0.54 6		
				2448.11 17	0.045 6		
				2450.5 3	0.031 5		
				2459.48 5	0.191 20		
				2471.5 3	0.025 4		
				2518.8 <i>3</i>	0.045 7		
				2539.87 7	0.27 3		
				2542.92 6	0.77 8		
				2552.64 17	0.020 3		
				2557.03 13	0.027 4		
				2564.89 19	0.055 /		
				2572.08 11	0.115 15 0.004 11		
				2580.00 14	0.094 11		
				2604.0.4	0.140 10		
				2627.7 3	0.18.3		
				2659.7 4	0.098 20		
				2668.8 4	0.107 20		
				2680.4 5	0.073 19		
				2688.1 4	0.19 5		
				2697.6 <i>3</i>	0.144 22		
				2775.21 17	0.27 3		
				2839.71 7	1.87 10		
				2857.15 15	0.29 3		
				2892.19 15	0.36 3		
				2897.97	0.061 20		
				2917.81 9	0.89 5		
				2949.23 13	0.50 3		
				3000.4.3	0.133 17		
				3034.43 17	0.293 24		
				3133.49 14	0.51 4		
				3204.7 4	0.101 20		
				3214.12 24	0.223 24		
				3255.9 4	0.37 7		
				3429.8 7	0.09 3		
				3578.2 3	0.070 12		
				3743.2 3	0.21 3		
				3764.84 19	0.180 17		
				3822.17 13	0.264 19		
				3899.07	0.32 11		
				3787.07 14 1000 1 2	0.242 19		
				4008.13	0.139.13		
				4421 15 14	0.294 22		
				4667.0 4	0.110 21		
				4851.16 25	0.120 13		

 $^{40}_{19}
m K_{21}$ -22

			1	(
\mathbf{E}_{i}^{level}	\mathbf{J}_i^{π}	\mathbf{E}_{f}^{level}	$\mathbf{J}_f^{\boldsymbol{\pi}}$	${\rm E}_{\gamma}^{\dagger}$	I_{γ}^{\dagger}	Mult.	δ^{\ddagger}
				4912.4 7	0.044 11		
				4929.3 <i>3</i>	0.183 21		
				5188.8 <i>3</i>	0.053 6		
				5216.9 6	0.020 4		
				5228.86 24	0.057 5		
				6067.6 <i>3</i>	0.050 5		
29.8299	3-	0.0	4-	29.8299 5	86 7 ^k	M1(+E2)	$\leq 0.073^{h}$
521.7		0.0	4-	521.7 ^g			
800.1427	2-	29.8299	3-	770.3053 18	43 4	M1(+E2)	$+0.04 + 3 - 6^{h}$
		0.0	4-	800.3 <i>3</i> ^{<i>l</i>}	$0.063 \ 7^l$		
891.398	5-	29.8299	3-	862.2 <i>3</i> ^l	$0.012 \ 3^{l}$		
		0.0	4-	891.372 <i>21</i>	0.90 9		
1084.3		800.1427	2-	284.1^{g}			
1173.4		29.8299	3-	1143.5 ^g			
1228.2		29.8299	3-	1198.3 ^g			
1248.4		0.0	4-	1248.4^{g}			
1330.5		0.0	4-	1330.5 ^g			
1409.2		0.0	4-	1409.2^{g}			
1520.7		800.1427	2-	720.5^{g}			
1556.6	0	800.1427	2-	756.4 ^g	1 55 14		
1643.639	0+	800.1427	2-	843.478 16	1.57 16		
1077 7		29.8299	3-	1613.84 4	5.7 6		
18//./	2	800.1427	2-	1077.58	700		
1959.068	2+	800.1427	2-	1158.901 20	/.88		
2017 251	2	29.8299	3- 2	1929.34 10	1.8.5	M1 + E2	0.10 4
2047.334	2-	20,8200	2-	1247.175 24	3.04 072	M1+E2	+0.104
		29.8299	3- 4	2017.55 4	2.7.3	$\mathbb{N}11 + \mathbb{E}2$	+0.07 4 ³
2060 800	3	0.0 801 308	4- 5	2047.28 4	2.7 5	E2	
2009.809	5-	800 1/27	2-	1260 56 5	0.30 4		
		29 8299	3-	2039 94 4	273	$M1(\pm F2)$	$\pm 0.2.2$
		0.0	<u>J</u> _	2039.94 4	2.7 5	M1(+E2) M1(+F2)	+0.22
2076.1		0.0	4-	2076.1^{g}	2.01 20	WII(+E2)	10.01 10
2103 668	1-	1643 639	0+	$460.092.14^{l}$	$0.136.15^{l}$		
2105.000	1	800 1427	2-	1303 53 7	273	M1(+F2)	$+0.13 8^{h}$
		29 8299	3-	2073 74 10	657	WII(+E2)	10.15 0
2260.40	3+	29.8299	3-	2230.54 5	0.81.8		
	0.1	0.0	4-	2260.11.70	0.31.3		
2271.1		29.8299	3-	2241.2^{g}	01010		
2289.871	1+	2103.668	1-	$185.97 \ 10^l$	$0.118 \ 19^l$		
		1959.068	2+	330.798 7	0.33 3		
		1643.639	0 +	646.223 5	2.10 12		
		800.1427	2-	1489.77 5	1.21 12		
2290.493	3-	891.398	5-	1399.03 4	0.53 5		
		0.0	4-	2290.58 7	2.8 <i>3</i>		
2397.165	4-	2069.809	3-	327.23 8	0.062 8		
		29.8299	3-	2367.17 5	0.58 6		
		0.0	4-	2397.12 6	0.224 23		
2419.171	2-	2103.668	1-	315.52 8 ^l	$0.062 \ 8^l$		
		2069.809	3-	349.33 4	0.053 7		
		2047.354	2-	371.792 <i>10^l</i>	$0.172 \ 18^l$		
		1959.068	2+	460.092 14 ^l	0.136 <i>15^l</i>		
		800.1427	2-	1619.00 4	6.2 6	M1+E2	+0.24 6 ^{hi}
		29.8299	3-	2389.18 5	1.34 <i>13</i>		
		0.0	4-	2418.69 15	0.63 6		
2422.1		0.0	4-	2422.1 ^g			
2575.93	2+	2260.40	3+	315.52 8 ^l	$0.062 \ 8^{l}$		

 $\gamma(^{40}\text{K})$ (continued)

\mathbf{E}_{i}^{level}	\mathbf{J}_i^{π}	\mathbf{E}_{f}^{level}	J_f^{π}	${\rm E}_{\gamma}^{\dagger}$	I_{γ}^{\dagger}	Mult.	δ^{\ddagger}
		2047.354	2-	528.76 14 ^l	$0.017 \ 3^{l}$		
		29.8299	3-	2545.85 10	2.8 3		
2618.1		800.1427	2-	1817.9 ^g			
2625.990	0-	2103.668	1-	522.319 7	1.53 16		
2720 272	1	800.1427	2-	1825.77 5	0.65 7		
2730.372	1	2419.171	2- 1	511.15 4 626 1 <i>2l</i>	0.135 J		
		1643 639	1- 0+	1086 707 19	1 11 11		
		800.1427	2-	1930.2 3	0.5 3		
2746.91	(2,3)-	800.1427	2-	1946.43 17	0.040 6		
		29.8299	3-	2716.95 11	0.50 4		
		0.0	4-	2747.00 18	0.26 3		
2756.72	2+	2419.171	2-	337.75 12	0.036 6		
		1643.639	0+	1113.3 3	0.029 5		
		29 8299	2- 3-	1930.38 3	1.64 10		
2786.644	3+	2290.493	3-	496.06 4	0.047.5		
		1959.068	2+	827.552 15	0.45 5		
		29.8299	3-	2756.81 7	1.93 10		
		0.0	4-	2787.0 6	0.14 5		
2807.88	(1,2)-	2047.354	2-	760.6 4	0.12 4		
		1959.068	2+	848.7 <i>3^l</i>	$0.104 \ 19^{l}$		
2025 1		800.1427	2-	2007.71 4	2.5 3		
2923.1		800.1427	2-	2124.9 ⁸ 2025 18			
2939.2		800.1427	2-	2139.0^{g}			
2946.2		29.8299	3-	2916.3 ^g			
2985.87	(2-,3+)	2290.493	3-	695.31 8 ^l	$0.042 \ 6^{l}$		
		1959.068	2+	1027.09 24	0.036 8		
		800.1427	2-	2185.70 20	0.47 24		
2000.0		29.8299	3-	2955.94 16	0.41 3		
3000.0	2	800.1427	2-	2199.8° 737.45.3	0 146 15		
3021.93	2-	2290.493	3-	958 35 9	0.026 3		
		1959.068	2+	$1068.87.3^{l}$	$0.40 \ 4^{l}$		
		0.0	4-	3027.7 3	0.139 18		
3063.5		800.1427	2-	2263.4 ^g			
		0.0	4-	3063.5 ^g			
3093.8		29.8299	3-	3063.9 ^g	!		
3109.721	(1,2)+	2575.93	2+	534.3 <i>3ⁱ</i>	$0.009 3^{i}$		
		2260.40	3+	848.7 3 ^c	$0.104 \ 19^{\circ}$		
		2047.354	2- 2+	1062.20 8	0.052.0 0.23.4		
		1643.639	0+	1466.11.3	0.26.3		
3128.36	2-	2807.88	(1,2)-	320.9 6	0.009 5		
		2756.72	2+	371.792 <i>10^l</i>	$0.172 \ 18^l$		
		2289.871	1 +	838.8 5	0.066 17		
		29.8299	3-	3098.56 20	0.37 14		
21.40 5		0.0	4-	3128.06 13	0.61 4		
3140.7 2146.44	1	0.0	4-	5140.7^{δ}	0.014.2		
3140.44	1	2419.171 1050.069	∠- 2⊥	121.1 3° 1187 45 8	0.014 3'		
		1643 639	$^{2+}_{0+}$	1503.00 10	0.41 4		
		800.1427	2-	2346.05 10	0.69 7		
3153.81	(2,3)-	2756.72	2+	397.28 17	0.030 7		
		2397.165	4-	756.4 <i>6</i> ^l	$0.08 \ 4^{l}$		
		1643.639	0+	1509.9 <i>3</i> ^{<i>l</i>}	$0.022 \ 4^{l}$		

$^{40}_{19} m K_{21}$ -24

\mathbf{E}_{i}^{level}	\mathbf{J}_i^{π}	\mathbf{E}_{f}^{level}	${ m J}_f^{m \pi}$	$E_{\gamma}{}^{\dagger}$	$I_{\gamma}{}^{\dagger}$	Mult.	δ^{\ddagger}
		0.0	4-	3153.5 3	0.38 3		
3228.67	2-	2289.871	1+	938.72 6	0.098 11		
		2103.668	1-	1124.916^{i}	$0.120 \ 13^{i}$		
		29 8299	2- 3-	319863	0.25 5		
		0.0	4-	3229.4 4	0.128 21		
3305.2		800.1427	2-	2505.0 ^g			
3326.6		800.1427	2-	2526.5 ^g			
2260.02		0.0	4-	3326.6 ^g			
3368.03	(2,3)-	2746.91	(2,3)-	$620.96 7^{\circ}$	$0.070.8^{\circ}$		
		2047.554	2-	1520.94	0.30.5		
		29.8299	3-	3336.3 10	1.7.8		
		0.0	4-	3368.9 6	0.10 3		
3373.4		800.1427	2-	2573.2 ^g			
3393.63	2-	1959.068	2+	1434.50 6	0.140 15		
2414.24	2	800.1427	2-	2593.32 10	0.50 5		
3414.34	2+	3228.67	2-	185.97 10°	$0.118 19^{\circ}$		
		16/13 630	0+ 0+	$1771 \ 1 \ 5^{l}$	0.035 I0		
		800.1427	0+ 2-	2614.21 9	1.16 7		
		29.8299	3-	3384.66 24	0.40 5		
3428.9		0.0	4-	3428.9 ^g			
3439.144	(2+)	2625.990	0-	813.12 7 ^l	$0.046 \ 6^l$		
		2103.668	1-	1335.48 18	0.033 6		a aa aak
		1959.068	2+	1480.09 4	1.54 16	M1(+E2)	$+0.22\ 22^{n}$
		800 1427	0+ 2-	2638 93 11	1.34 14		
3486.21	2-	3109.721	(1,2)+	376.53 3	0.031 4		
		2807.88	(1,2)-	678.13 20 ^l	$0.027 \ 5^{l}$		
		2730.372	1	756.4 6 ^l	$0.08 \ 4^{l}$		
		2290.493	3-	1195.81 7	0.055 6		
		2047.354	2-	1438.72 4	0.218 23		
25177		800.1427	2-	$2685.6 3^{i}$	$0.24 5^{i}$		
3528.4		800 1427	4- 2-	2728.2 ^g			
3556.97	(1- to 4+)	3027.95	2-	528.76 14^l	$0.017 \ 3^{l}$		
	(,	2756.72	2+	800.3 <i>3^l</i>	$0.063 7^{l}$		
		2575.93	2+	981.03 7 ^l	$0.103 \ l2^{l}$		
		2289.871	1 +	1267.5 <i>3</i> ^{<i>l</i>}	$0.105 \ 21^l$		
		2069.809	3-	1487.42 9 ^l	$0.097 \ 12^{l}$		
		2047.354	2-	1509.9 <i>3^l</i>	$0.022 \ 4^{l}$		
		1959.068	2+	1597.88 4	0.29 3		
		800.1427 20.8200	2-	2/33.2° 3526.99.10	1.02.7		
3578.3		800.1427	2-	2778.1 ^g	1.02 /		
3599.24	2-	2985.87	(2-,3+)	613.384 24	0.203 23		
		2575.93	2+	1023.21 4	0.26 3		
		2289.871	1 +	1308.9 4 ^l	$0.043 \ 17^l$		
		2290.493	3-	1308.9 4 ^l	$0.043 \ 17^l$		
		2047.354	2-	1551.77 9	0.102 12		
		29.8299	∠- 3-	2199.30 10 3569.30 8	0.95 10		
3629.95	2-,3-	3027.95	2-	602.26 17	0.034 6		
		2397.165	4-	1232.74 <i>3</i>	0.134 14		
		2069.809	3-	1560.44 19	0.175 21		
		29.8299	3-	3599.62 20	0.185 19		

 γ (⁴⁰K) (continued)

\mathbf{E}_{i}^{level}	${ m J}^{\pi}_i$	\mathbf{E}_{f}^{level}	${ m J}_f^{\pi}$	$E_{\gamma}{}^{\dagger}$	${\rm I}_{\gamma}{}^{\dagger}$	Mult.	δ^{\ddagger}
		0.0	4-	3629.94 15	0.33 3		
3655.6		800.1427	2-	2855.4 ^g			
3663.739	(3,4)+	3128.36	2-	534.3 <i>3</i> ^{<i>l</i>}	0.009 <i>3</i> ^{<i>l</i>}		
		2985.87	(2-,3+)	678.13 20 ^l	$0.027 \ 5^{l}$		
		2290.493	3-	1373.227 21	1.29 13		
		1959.068	2+	1704.73 9	0.94 12		
		29.8299	3-	3633.88 9	0.63 4		
2700 5		0.0	4-	3663.32 9	0.44 3		
3709.5		800.1427	2-	2909.3 ⁸			
3/19.0	1.	800.1427	2-	2919.4°	0.21.5/		
3736.46	1+	2373.93	2+	1102.39 24	$0.31 3^{\circ}$		
		2047 354	2-	1691 26 6	0.32.5		
		1643.639	0+	2094.61 10	0.048.5		
		800.1427	2-	2938.32 9	0.67 4		
3767.79	(< 3)-	3146.44	1	620.96 7 ^l	$0.070 \ 8^{l}$		
		3128.36	2-	640.4 <i>6</i> ^{<i>l</i>}	$0.044 \ 22^{l}$		
		2786.644	3+	981.03 7 ^l	$0.103 \ I2^{l}$		
		2419.171	2-	1348.06 <i>14^l</i>	$0.035 \ 4^{l}$		
		800.1427	2-	2967.8 <i>3</i>	0.163 19		
3797.57	1 +	3414.34	2+	383.01 18	0.020 4		
		2985.87	(2-,3+)	811.39 <i>13</i>	0.023 4		
		2575.93	2+	1221.71 7	0.067 7		
		1959.068	2+	1838.61 8	0.44 4		
2007.0		1643.639	0+	2153.81 4	0.798		
2021 42	2	800.1427 2496 21	2-	5007.0°	0.010 6		
3621.43	2-	3460.21	2-	555.44 <i>14</i> 1024 28 20	0.0400°		
		2780.044	$(2 3)_{-}$	1034.28 20	0.0380° 0.144.17		
		2740.91	(2,3)-	1074.39 9	0.037.9		
		2397.165	4-	1424.229 23	0.36 4		
		2290.493	3-	1530.7 3	0.058 14		
		29.8299	3-	3791.9 <i>3</i>	0.18 3		
		0.0	4-	3820.5 ^g			
3840.228	(1,2+)	3109.721	(1,2)+	730.48 15	0.024 4		
		2069.809	3-	1771.4 5 ^l	$0.031 \ 9^l$		
		1959.068	2+	1881.20 5	0.50 5		
		1643.639	0+	2196.61 5	0.34 4		
3856 /		800.1427	2-	3040.24 13	0.62 4		
3868.66	2-	3414 34	2- 2+	454 19 8	0.038.5		
5000.00	2	3228.67	2-	$640.4 6^{l}$	$0.044 \ 22^{l}$		
		2746.91	(2,3)-	1121.77 7	0.111 12		
		2289.871	1+	1578.97 12	0.035 4		
		2103.668	1-	1765.24 15	0.224 23		
		800.1427	2-	3068.7 4	0.25 4		
		29.8299	3-	3838.50 7	0.62 4		
2007.02	(1, 2, 2)	0.0	4-	3868.3 10	0.12 5		
3887.92	(1-,2,3)	2/30.72	2+ 2	1131.1/ 3	0.103 II 0.10 4		
		29 8299	2- 3-	3857 97 11	0.19 4		
3923 90	$(1 - t_0 4 +)$	3738 48	1+	1859710^l	0.303 21 $0.118 10^{l}$		
5745.70	(1 (0 +1)	3228 67	2-	$695.31 \ 8^{l}$	$0.042.6^{l}$		
		2575.93	2 2+	1348 06 14 ^l	$0.035 \ 4^{l}$		
		2103 668	1-	$1820.35 5^{l}$	$0.27 3^{l}$		
		1959.068	2+	1964.27 23	0.037 6		
		29.8299	3-	3895.7 11	0.21 11		

 γ (⁴⁰K) (continued)

\mathbf{E}_{i}^{level}	\mathbf{J}_i^{π}	\mathbf{E}_{f}^{level}	J_f^{π}	${\rm E}_{\gamma}^{\dagger}$	I_{γ}^{\dagger}	Mult.	δ^{\ddagger}
3933.0		800.1427	2-	3132.8 ^g			
4020.35	(< 3)-	3486.21	2-	534.3 <i>3</i> ¹	$0.009 \ 3^{l}$		
		3393.63	2-	626.1 <i>3</i> ^{<i>l</i>}	$0.010 \ 3^{l}$		
		2985.87	(2-,3+)	1034.28 20 ^l	$0.038 \ 6^l$		
		2103.668	1-	1916.51 6	0.26 3		
		2047.354	2-	1973.00 4	0.32 3		
		800.1427	2-	3220.08 21	0.24 3		
4058.3	(1, 2, 2)	800.1427	2-	3258.1 ⁸	0.047.7		
4104.40	(1-,2,3-)	3003.739	(3,4)+	440.777	0.047 /		
		2985 87	(2-3+)	1118 38 73	0.054 7		
		2756 72	2+	$1348.06.14^{l}$	$0.035 4^{l}$		
		2290.493	3-	1813.94 14	0.072 9		
		2103.668	1-	2001.24 20	0.137 20		
		2047.354	2-	2057.07 5	0.141 16		
		800.1427	2-	3304.24 11	0.99 7		
4110.84	(1-,2,3)	3109.721	(1,2)+	1001.05 5	0.081 9		
		3027.95	2-	1082.92 /	0.200 22		
		2985.87	(2-,3+)	1124.91 0°	$0.120 \ 13^{\circ}$		
		2730.72	2+	$1334.12 \ 3$ 1820 35 5 ^l	0.1017		
		16/3 630	<u>)-</u>	$2467.31.10^{l}$	0.275		
		800 1427	0+ 2-	3310.9.5	0.12.3		
		29.8299	2 3-	4080.69 12	0.325 22		
		0.0	4-	4110.6 ^g			
4149.01	(2-,3)	3393.63	2-	756.4 6 ^l	$0.08 \ 4^{l}$		
		3228.67	2-	920.12 <i>18^l</i>	$0.017 \ 3^{l}$		
		2985.87	(2-,3+)	1162.59 24 ^l	$0.31 \ 5^{l}$		
		2397.165	4-	1751.76 5	0.225 23		
		2290.493	3-	1858.51 5	0.54 5		
		2260.40	3+ 2	1888.45 8	0.098 11		
		29.8299	2- 3-	4118.5 ^g	1.12 /		
		0.0	4-	4148.4 3	0.134 18		
4165.4		29.8299	3-	4135.6 ^g			
		0.0	4-	4165.4 ^g			
4180.03	(3-)	3439.144	(2+)	740.89 6	0.26 3		
		3228.67	2-	951.16 7	0.0435		
		2/80.044	3+ 2	$1393.10\ 0$ $1761\ 10\ 7^{l}$	$0.120 \ 14$		
		1050.068	2-	2221 27 11ab	0.0304 0.183.24		
		891.398	2+ 5-	3286.4.8	0.15.5		
4213.07	(2-3+)	3486.21	2-	$727.1.3^{l}$	$0.014 3^{l}$		
	(_ ,0 !)	3414.34	- 2+	$798.8 3^{l}$	$0.062 7^{l}$		
		2069.809	3-	2143.37 11	0.139 16		
		1643.639	0+	2568.8 4 ^l	0.033 6 ^l		
4253.62	1-	3153.81	(2,3)-	1100.13 18	0.042 6		
		3128.36	2-	1124.91 <i>6^l</i>	0.120 <i>13^l</i>		
		2985.87	(2-,3+)	1267.5 <i>3</i> ^{<i>l</i>}	$0.105 \ 21^l$		
		2103.668	1-	2149.93 5	0.43 4		
		2069.809	3- 2	2183.70.20	0.4/24		
		2047.354	∠- 0+	2200.33 10	0.75 8° 1.40 0		
		800 1427	0 + 2-	3452.2 10	1.40 9		
		29.8299	3-	4223.66 7	0.83 5		
4280.52	2-	2575.93	2+	1704.70 20	0.31 16		
		2047.354	2-	2233.0 4	0.16 16		

 $\gamma(^{40}\text{K})$ (continued)

\mathbf{E}_{i}^{level}	\mathbf{J}_i^{π}	\mathbf{E}_{f}^{level}	${ m J}_f^{\pi}$	${\rm E}_{\gamma}^{\dagger}$	$\mathrm{I}_{\gamma}^{\dagger}$	Mult.	δ^{\ddagger}
		800.1427	2-	3480.6 5	0.13 3		
		29.8299	3-	4249.5 4	0.119 16		
		0.0	4-	4280.35 22	0.37 4		
4395.88	(0,1,2)-	3738.48	1 +	657.39 3	0.078 8		
		3128.36	2-	1267.5 <i>3</i> ^l	$0.105 \ 21^l$		
		2730.372	1	1665.43 4	0.143 15		
		2047.354	2-	2348.72 9 ^{ac}	0.24 3		
4419.36	(2-,3,4+)	3663.739	(3,4)+	$756.4 6^{i}$	$0.08 \ 4^{i}$		
		3556.97	(1 - to 4 +)	862.2 <i>3ⁱ</i>	$0.012 3^{i}$		
		3153.81	(2,3)-	1265.54 9	0.199 23		
		3109.721	(1,2)+	1308.9 4 ⁱ	$0.043 \ 17^{i}$		
		2373.93	2+ 4	1845.55 9	0.005 / 0.165 23		
		2397.103	4- 3_	4389 32 18	0.105 25		
4472 99	(2 3)-	3439 144	(2+)	$1034\ 28\ 20^l$	$0.37 \ 5^{l}$		
++72.99	$(2,3)^{-}$	3393 63	2-	1079 44 13	0.100.73		
		2985 87	(2-3+)	$1487 42.9^{l}$	$0.097 \ 12^{l}$		
		2746.91	(2,3)-	$1725.68.17^{l}$	$0.033 5^{l}$		
		2625 990	0-	1846726^{l}	$0.055 \ 5$ $0.105 \ 11^{l}$		
		2069.809	3-	2403.04 9	0.119 13		
		0.0	4-	4472.80 11	0.40 3		
4537.06	2-	3738.48	1+	798.8 <i>3</i> ^l	$0.062 \ 7^{l}$		
		3228.67	2-	1308.9 4 ^l	$0.043 \ 17^{l}$		
		3109.721	(1,2)+	1427.45 18	0.022 3		
		2575.93	2+	1961.11 6	0.154 16		
		2069.809	3-	2467.31 10 ^l	$0.067 \ 7^{l}$		
		1959.068	2+	2577.63 10	0.32 3		
		800.1427	2-	3737.01 10	1.14 7		
		29.8299	3-	4506.96 7	0.77 5		
4744.093	(2+)	4180.03	(3-)	563.86 6 ^{aa}	0.073 9		
		4104.46	(1-,2,3-)	$640.4 6^{i}$	$0.044 \ 22^{i}$		
		3840.228	(1,2+)	903.878 23	0.150 15		
		3/9/.5/ 3500.24	1+2-	940.29 8	0.0374		
		2807.88	(1 2)-	1935 7 3	0.08.5		
		2730.372	1	2013.90.20	0.17.3		
		2575.93	2+	2168.16 4	0.179 19		
		2289.871	1+	2454.7 3	0.025 4		
		2260.40	3+	2483.8 <i>3</i>	0.029 8		
		1959.068	2+	2784.4 4	0.21 5		
		1643.639	0+	3100.42 20	0.37 14		
1500 65	(1)	800.1427	2-	3943.81 6	0.98 5		
4788.65	(1+)	4472.99	(2,3)-	315.52 8	$0.062 8^{i}$		
		4253.62	1-	534.3 3 ⁱ	$0.009 3^{i}$		
		4149.01	(2-,3)	$640.4 6^{i}$	$0.044 \ 22^{i}$		
		4110.84	(1-,2,3)	678.13 20 ⁱ	0.0275^{i}		
		3868.66	2-	920.12 <i>18ⁱ</i>	$0.017 3^{i}$		
		3663.739	(3,4)+	1124.9 6 ⁱ	$0.120 I3^{i}$		
		3027.95	2-	$1761.10 \ 17^{t}$	$0.030 4^{i}$		
		2/36.72	2+	2031.0 3 2162.16.17	0.26 4		
		2023.990	0- 3_	2102.10 17	0.041 J		
		2200.40	5 - 1-	2526.44 11 2685 6 3 ^l	0.13713 0.245^{l}		
		1643 639	0+	3144.30 <i>19^{ae}</i>	0.28 3		
4872.55	(2,3)-	4537.06	2-	335.44 14 ^l	$0.040 \ 6^l$		
	(_,_)	3153.81	(2,3)-	1718.68 4	0.166 7		

 $\gamma(^{40}\text{K})$ (continued)

\mathbf{E}_{i}^{level}	J_i^{π}	\mathbf{E}_{f}^{level}	J_f^{π}	${\rm E}_{\gamma}^{\dagger}$	I_{γ}^{\dagger}	Mult.	δ^{\ddagger}
		3146.44	1	1725.68 <i>17^l</i>	0.033 5 ^l		
		2756.72	2+	2115.77 14	0.031 4		
		1959.068	2+	2912.6 <i>3</i>	0.145 21		
		29.8299	3-	4842.8 4	0.076 12		
1006.0		0.0	4-	4872.47 14	0.252 19		
4906.9		800.1427	2- 4-	4106.78 4006.0g			
4992 94	(2 - 3 +)	4180.03		$813 12 7^{l}$	0.046 6^l		
	(2, 31)	3923.90	(1 - to 4 +)	1068 87 3 ^l	0.0400		
		3146.44	1	$1846.72.6^{l}$	0.105 II^l		
		2786 644	3+	22063510^{l}	$0.75 8^{l}$		
		2290.493	3-	2702.60 16	0.28 3		
		2069.809	3-	2922.91 20	0.33 3		
		29.8299	3-	4962.2 4	0.107 19		
		0.0	4-	4993.9 ^g			
5063.47	(2-,3+)	3368.03	(2,3)-	1695.44 8	0.100 11		
		3109.721	(1,2)+	1953.74 6	0.31 3		
		2419.171	2-	2644.0 3	0.26 4		
6311		0.0	4-	5062.9 4 6310 0g	0.070 9		
7799 534	1+2+	5063 47	(2-3+)	2736.09.9	0.83.5		
1177.551	1,21	4992.94	(2,3+) (23+)	2806.53 12	1.76 13		
		4872.55	(2,3)-	2926.85 10	0.73 5		
		4788.65	(1+)	3010.55 14	0.50 3		
		4744.093	(2+)	3055.58 12	2.86 17		
		4537.06	2-	3262.56 12	2.43 17		
		4472.99	(2,3)-	3326.44 12	0.79 6		
		4419.36	(2-,3,4+)	3380.3 4	0.22 4		
		4393.88 4280.52	(0,1,2)-	3403.39 11	1.00 7		
		4253 62	2- 1-	3545 95 6 ^{a f}	473		
		4213.07	(23+)	3586.53 13	0.217 17		
		4180.03	(3-)	3619.40 6	0.77 4		
		4149.01	(2-,3)	3650.34 5	2.22 11		
		4110.84	(1-,2,3)	3688.67 15	1.49 12		
		4104.46	(1-,2,3-)	3695.15 11	1.43 10		
		4020.35	(≤ 3) -	3778.99 10	0.93 6		
		3923.90	(1 - 10 + 1) (1 - 2 - 3)	30/4./ 3	0.28 0		
		3868.66	(1-,2,3) 2-	3930.64 5	1.56.8		
		3840.228	(1,2+)	3959.19 5	1.48 8		
		3821.43	2-	3977.83 5	1.29 7		
		3797.57	1+	4001.78 5	1.61 9		
		3767.79	(≤ 3)-	4031.58 14	0.221 17		
		3738.48	1+	4060.92 5	1.53 8		
		3663.739	(3,4)+	4135.58 5	3.41 18		
		3500 24	2-,3-	4109.51 9	0.714 2 23 12		
		3556.97	(1- to 4+)	4242.47 11	0.45 3		
		3486.21	2-	4312.8 3	0.28 4		
		3439.144	(2+)	4360.19 6	4.33 24		
		3414.34	2+	4384.95 7	1.47 8		
		3393.63	2-	4405.36 11	0.42 3		
		3368.03	(2,3)-	4431.17 16	0.59 5		
		5146.44 3128 26	1	4652.94 8	0.52 3		
		3128.30 3109 721	$(1 2)_{+}$	4070.04 10	0.00 4		
		2939.2	(1,-)	4860.4 ^g	0.052 11		

\mathbf{E}_{i}^{level}	\mathbf{J}_i^{π}	\mathbf{E}_{f}^{level}	J_f^π	E_{γ}^{\dagger}	$\mathrm{I}_{\gamma}^{\dagger}$	Mult.	δ^{\ddagger}
		2925.1		4874.5 ^g			
		2807.88	(1.2)-	4991.38.5	2.18 11		
		2786.644	3+	5012.47 6	1.17 6		
		2756.72	2+	5042.43 6	1.78 9		
		2730.372	1	5068.65 6	1.25 7		
		2625,990	0-	5173.19 5	2.30 12		
		2618.1		5181.5 ^g			
		2575.93	2+	5223.14 7	0.377 20		
		2422.1		5377.5 ^g			
		2419.171	2-	5379.84 6	7.9 4		
		2289.871	1 +	5509.12 7	3.17 16		
		2271.1		5528.5 ^g			
		2103.668	1-	5695.38 7	5.6 <i>3</i>		
		2076.1		5723.5 ^g			
		2069.809	3-	5729.21 7	2.28 12		
		2047.354	2-	5751.60 7	5.5 <i>3</i>		
		1877.7		5921.9 ^g			
		1556.6		6243.0 ^g			
		1520.7		6278.9 ^g			
		1409.2		6390.4 ^g			
		1330.5		6469.1 ^g			
		1248.4		6551.2 ^g			
		1228.2		6571.4 ^g			
		1173.4		6626.2 ^g			
		1084.3		6715.3 ^g			
		800.1427	2-	6998.77 10	2.15 11		
		800.1427	2-	7001.1 ^g			
		521.7		7277.9 ^g			
		29.8299	3-	7768.75 19	5.6 <i>3</i>		

[†] From 1984Vo01. Extensive E γ , I γ data are also available from 1972Op01 and 1970Jo04, but are less precise, thus not considered here. ^{*} From (pol n, γ) (1974Op01), unless otherwise stated. ^a Poor fit, the fitted energy deviates by about 3 times the quoted energy uncertainty.

^b Level-energy difference=2220.89. ^c Level-energy difference=2348.45.

^d Level-energy difference=2546.45. ^e Level-energy difference=3144.87. ^f Level-energy difference=3545.75. ^g From γγ coin data of 2002Va28.

^{*i*} From γ (θ) (1988Se06). ^{*i*} Other: +0.06 6 or +1.9 3 (1974Op01). ^{*j*} Or -9 2 (1974Op01). Other: +0.25 21 or \leq -8 (1988Se06). ^{*k*} From total feeding of 29.8 level.

¹ Multiply placed with undivided intensity.

³⁹K(n,γ),(n,n):resonances 1984Ma40,1973Si32

1984Ma40: E=9.05-110 keV. Measured yields, deduced resonance parameters.

1973Si32 (also 1971SiYI): E=0-400 keV, natural K target. A total 35 resonances (8 tentative) assigned to ⁴⁰K, deduced resonance parameters.

Other:.

1958Go01: total neutron cross sections in keV region.

Most data are from 1984Ma40. See also evaluation by 1981MuZQ.

	⁴⁰ K Levels								
E(level) [†]	$J^{\pi \ddagger}$	$(2J+1)\Gamma_n\Gamma_\gamma/\Gamma$	L#	E(n)(lab) (keV)	Comments				
7800.58 8	(0 to 3)-	0.060 eV 4	1	1.108 <i>1</i>	$(2J+1)\Gamma_n=0.060 \text{ eV } 4.$				
7802.70 8	(0 to 3)-	0.522 eV 2	1	3.281 <i>3</i>	$(2J+1)\Gamma_n = 0.400 \text{ eV } 6.$				
7808.65 8	1+	1.38 eV 2	0	9.386 9	$(2J+1)\Gamma_n=220 \text{ eV } 20; \Gamma_{\gamma}=0.463 \text{ eV } 8.$				
7811.36 8		0.330 eV 6	1	12.159 13					
7811.81 8	3-	2.06 eV 1	1	12.626 13	$(2J+1)\Gamma_n=5.2 \text{ eV } 12; \Gamma_{\gamma}=0.488 \text{ eV } 5.$ $I\pi: 1 (1973Si32)$				
7813 44 8	(0 to 3)-	0.94 eV 1	1	14 30 2	$(2I+1)\Gamma_{*}=3.2 \text{ eV} 7$ $\Gamma_{*}=0.266 \text{ eV} 5$				
7815.06.8	2-	1.20 eV 2	1	15.96.2	$(2I+1)\Gamma_{n} = 6.2 \text{ eV} / 2; \Gamma_{n} = 0.291 \text{ eV} 4$				
7815.80.8	3	1.15 eV 2	1	16 72 2	$(2I+1)\Gamma_n = 2.56 \text{ eV} 8$: $\Gamma_n = 0.30 \text{ eV}$				
7823 84 9	5	0.92 eV 2		24.97.3	$(23+1)1_{M}=2.50$ eV 0, $1_{V}=0.50$ eV.				
7824 42 9	$2\pm$	1.97 eV 3	0	25.56.3	(21+1) F474 eV 13: F0 396 eV 7				
7024.42 9	27	1.97 CV 5	0	25.50 5	$J\pi$: 1 (1973Si32).				
7827.15 9	2	0.18 eV <i>I</i>		28.36 3					
7830.72 9	3-	4.28 eV 7	I	32.23 3	$(2J+1)I_n = 14 \text{ eV}; 1_{\gamma} = 0.869 \text{ eV} 19.$ J π : 1 (1973Si32).				
7832.02 9	2-	1.47 eV 7	1	33.36 <i>3</i>	$(2J+1)\Gamma_n=65 \text{ eV } 4; \Gamma_{\gamma}=0.301 \text{ eV } 14.$ J π : (1) (1973Si32).				
7836.11 9		1.66 eV 5	1	37.56 3	$J\pi$: 0 (1973Si32).				
7836.21 9		1.56 eV 5		37.66.3					
7841.00.9	2+	5.0 eV 2	0	42.56 4	$(2J+1)\Gamma_n=2.70$ keV 13: $\Gamma_n=0.97$ eV 4.				
7843.50 9	-	0.92 eV 4	0	45.14 4					
7844.38 9	2-	3.08 eV 8	1	46.04 5	$(2J+1)\Gamma_n=208 \text{ eV } 8; \Gamma_{\gamma}=0.626 \text{ eV } 17.$				
7850 37 9	(0 to 3)-	176 eV 6	1	52 19 5	$(2I+1)\Gamma = -64 \text{ eV} 10$; $\Gamma = -0.362 \text{ eV} 13$				
7852 50 0	$(0 \ 10 \ 3)^{-}$	1.70 CV 0	1	54 37 5	$(23+1)1_n = 0 + c + 10, 1 \gamma = 0.502 c + 15.$				
7852.78 10	2-	2.09 eV 7	1	54.65 6	$(2J+1)\Gamma_n=80 \text{ eV } 20; \Gamma_{\gamma}=0.429 \text{ eV } 15.$ $I\pi: 0 (1973Si32)$				
7853.28 10		1.07 eV 5		55.16.6					
7853.93 10		0.85 eV 5		55.83.6					
7855.86 10	1+	4.4 eV 4	0	57.81 6	$(2J+1)\Gamma_n=3.2 \text{ keV } 3; \Gamma_{\gamma}=1.47 \text{ eV } 13.$ J π : 2 (1973Si32).				
7856.83 10		1.15 eV 6		58.80 6					
7857.99 10	1-	0.61 eV 6	1	59.99 6	$(2J+1)\Gamma_n=0.25$ keV 4: $\Gamma_n=0.203$ eV 21.				
7860.18 10		1.48 eV 7		62.24.6					
7866.32 11	1	5.3 eV 6	1	68.54 7	$(2J+1)\Gamma_n=5.8 \text{ keV } 7; \Gamma_{\gamma}=1.78 \text{ eV } 21.$ L: for 68 54 and/or 68 81				
7866.59 11		1.47 eV 10		68.81 7					
7873 32 11		0.43 eV 6		75 72 8					
7878 12 11		2 23 eV 10		80.64.8					
7878 63 11		1.40 eV 8	(1)	81 17 8	$I\pi$: (1) (1973\$;32)				
7882 26 11		0.76 eV 7	(1)	8/ 80 8	5π . (1) (1) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3				
788/ 01 12	1_	0.70 CV 7	1	87.60.0	$(2I+1)\Gamma = 1.40$ keV 16: $\Gamma = 0.28$ eV 4				
7880.06.12	1-	1.68 oV 14	1	07.78.0	$(23+1)1_n - 1.40$ KeV 10, $1\gamma - 0.20$ CV 7. L : for 02.78 and/or 03.00				
7800 26 12		2.00 eV 14	1	03.00.0	L. 101 72.76 allu/01 75.07.				
7803 86 12		2.03 eV 14	0	75.07 7 06 78 10	I_{π} : 1 (1073S;22)				
1073.00 13		2.2 EV 2	U	70.70 IU 07.21 IO	$J_{N, 1} (17/33132).$				
1074.30 13	2	2.2 ev 2	1	7/.31 IU	$(21 + 1) \Sigma = 0.61$ log 12: $\Sigma = 0.24$ -V 2				
1890.38 13	2- (0, (, , 2))	1.2 eV 2	1	99.30 <i>IU</i>	$(2J+1)I_n = 0.01$ KeV 13; $I_\gamma = 0.24$ eV 3.				
1899.3 2	(0 to 3)-	1.8 eV 2	(1)	102.3 2	$(2J+1)I_n = 0.18$ keV 3; $I_{\gamma} = 0.36$ eV 3.				
7900.5 2		1./ ev 2		103.5 2					
/901.3 2		2.4 eV 2		104.4 2					
1903.1 2		0.92 eV 14		100.2 2					

$E(level)^{\dagger}$	$J^{\pi \ddagger}$	$(2J+1)\Gamma_n\Gamma_\gamma/\Gamma$	$L^{\#}$	E(n)(lab) (keV)	Comments
7905.4.2		1.4 eV 2		108.6.2	
7905.5.2	1+	2.7 eV 7	0	108.7.2	$(2.1+1)\Gamma_n = 6.0 \text{ keV}$ 13: $\Gamma_n = 0.92 \text{ eV}$ 24.
7906.4 2		1.3 eV 2	0	109.6 2	
7906.8 2		1.1 eV 2		110.0 2	
7911.8 3		1.00 eV 12		115.1 3	
7914.0 3		3.9 eV 6		117.4 3	
7915.4 3	(0 to 3)-	1.02 eV 12	(1)	118.8 3	$(2J+1)\Gamma_n = 0.31$ keV 5.
7916.6 <i>3</i>	`	1.6 eV 2		120.1 3	
7918.3 <i>3</i>	(0 to 3)-	2.5 eV 2	(1)	122.8 3	$(2J+1)\Gamma_n=0.13$ keV 4; $\Gamma_{\gamma}=0.50$ eV 4.
7922.6 3	2	3.2 eV 3		126.2 3	$(2J+1)\Gamma_{n}=0.21$ keV 2; $\Gamma_{\nu}=0.65$ eV 6.
7923.5 <i>3</i>		2.1 eV 2		127.1 3	
7924.2 <i>3</i>		0.32 eV 16		127.9 <i>3</i>	
7925.7 3		1.8 eV 2		129.4 <i>3</i>	
7931.5 <i>3</i>		2.0 eV 3	(1)	135.3 <i>3</i>	$J\pi$: (1,2) (1973Si32).
7932.1 <i>3</i>		2.9 eV 3		136.0 <i>3</i>	
7932.7 <i>3</i>		5.2 eV 3	(1)	136.6 <i>3</i>	L: for 136.0 and/or 136.6.
7940.0 <i>3</i>		11.6 eV 5	(1)	144.1 <i>3</i>	S: doublet 1.9 eV 3.
					Jπ: 2 (1973Si32).
7941.0 <i>3</i>		2.9 eV 3		145.1 <i>3</i>	
7943.1 <i>3</i>		2.6 eV 3		147.2 <i>3</i>	
7943.9 <i>3</i>		2.0 eV 3		148.1 <i>3</i>	
7947.7 <i>4</i>				152.0 4	
7949.6 <i>4</i>			(1)	153.9 4	$(2J+1)\Gamma_n = 6.4 \text{ keV } 8.$
					$J\pi$: (3) (1973Si32).
7957.8 4			(1)	162.3 4	$(2J+1)\Gamma_n = 3.8 \text{ keV } 4.$
					Jπ: 1,2 (1973Si32).
7972.7 4	1		(1)	177.6 4	$(2J+1)\Gamma_n = 3.4 \text{ keV } 4.$
					$J\pi$: 1 (1973Si32).
7983.1 5	(0 to 3)-		1	188.3 5	$(2J+1)\Gamma_n=0.84$ keV 17.
7987.8 5	1 +		0	193.1 5	$(2J+1)\Gamma_n = 3.0 \text{ keV } 6.$

⁴⁰K Levels (continued)

[†] E(n)(c.m.)+S(n)(⁴⁰K), where S(n)(⁴⁰K)=7799.51 7 (2003Au03). [‡] As proposed by 1984Ma30 and/or 1973Si32. [#] From 1973Si32.

³⁹K(d,p) 1974Fi08

 $J\pi$ (³⁹K g.s.)=3/2+. 1974Fi08: E=12 MeV. Measured $\sigma(\theta)$, FWHM=15 keV, DWBA analysis. Cross sections are accurate to 15%.

Others:. 1959En57: E=6 MeV. Measured $\sigma(\theta)$, cross sections; deduced L values and reduced widths. A total of 52 groups identified which are in agreement with data from 1974Fi08. 1959Da02: E=8.9 MeV. Measured $\sigma(\theta)$ for 23 groups.

_.

1957Te01: E=4 MeV. Measured $\sigma(\theta)$ for three groups at 0, 820 and 2080.

1953Bu98: E=4.8-5.7 MeV. Four groups reported at 0, 32, 800 and 893.

1950Sa03: E=3.90 MeV. Measured energies and relative yields of eight groups up to 4800.

Differential cross section data are also available from 1959En57

		⁴⁰ K Levels	
Level	Cross section $d\sigma/d\Omega$ (max.) mb/sr	data (1974Fi08) Level	dσ/dΩ (max.) mb/sr
0	3.0	3720	0.40
30	2.4	3773	0.50
801	1.8	3792	0.54
891	3.6	3827	0.53
1646	0.07	3870	3.8
1962	0.20	3928	0.26
2048	13	4025	2.6
2072	13	4080	0.15
2105	11	4109	4.2
2262	0.18	4211	0.15
2292	0.08 a	4263	8.3
2397	0.32	4298	0.60
2420	0.46	4356	0.13
2578	0.20	4401	3.6
2628	4.0	4467	4.2
2751	1.4	4546	4.0
2789	0.065	4592	2.2
2810	0.28	4663	1.2
2951	0.07	4765	0.90
2987	0.10	4794	1.6
3027	0.04	4811	2.8
3113	0.09	4878	0.36
3127	0.05	4912	2.5
3149	0.04	4948	0.70
3229	4.6	4997	0.10
3370	1.7	5030	0.10
3393	0.50	5081	0.38
3416	0.52	5116	0.46
3486	0.90	5136	1.1
3601	0.19	5158	0.44
3631	6.0	5210	0.80
a: 0.80	in Table 3 of 1	.974Fi08 seems a [.]	type error in

view of the value shown in $\sigma(\theta)$ plot in figure 4.

E(level)	J^{π}	L	(2J+1)s	Comments
0		3	8.1	
30 5		1+3	0.12,6.3	E(level): 32 2 (1953Bu98).
801 5		1+3	0.07,4.6	
891 5		3	8.9	
1646 5		(2)	0.10	L: 1 (1959En57).
1962 5		0+2	0.012,.076	
2048 5		1	2.6	

⁴⁰K Levels (continued)

E(level)	J^{π}	L	(2J+1)s	Comments
2072.5	_	1	2.6	
2105 5		1	2.2	
2262 5		(2)	0.26	
2292 5		(2,3)	0.13,0.18	E(level): probable doublet: 2290+2291.
			,	L: (1) (1959En57).
2397 5		1	0.064	
2420 5		1	0.092	
2578 <i>5</i>		2	0.26	
2628 5		1	0.76	
2751 5		1	0.25	
2789 <i>5</i>				
2810 5		1	0.048	
2951 5				
2987 <i>5</i>				
3027 5		~		L: 1 (1959En57) for an uncertain level at 3021.
3113 5		$0^{@}$		
3127 5				
3149 5		$(1)^{@}$		
3229 5		1	0.92	
3370 <i>5</i>		1	0.31	
3393 <i>5</i>		1	0.088	
3416 5		0+2	0.036,0.11	
3486 5		1	0.17	
3601 5		1	0.034	
3631 5		1	1.1	
3657 81				
3720 5		1		
3738 8 [‡]				
3773 5		(0,1)	0.08,0.072	L: 1 (1959En57).
3792 5		1	0.084	L: 0 (1959En57).
3827 5		1	0.080	
3838 8 [‡]				
3870 5		1	0.61	
3883 8†				
3898 8 [†]				
3928 <i>5</i>				
4025 5		1	0.40	
4080 5				
4109 5		1	0.656	
4211 5				
4263 5		1	1.3	
4298 5		1	0.12	
4356 5		1	0.50	
4401 5		1	0.58	
446/5		1	0.68	
4340 3		1	0.05	
4592 5		1	0.30	
4005 5		0	0.10	
4705 5		1	0.050	
4811 5		1	0.35	
4878 5		1	0.044	
4912.5		1	0.35	
4948 4		1	0.084	
4997 5		-		
5030 5				
5080 5		1	0.046	
5116 5		1	0.056	

⁴⁰ K Levels	(continued)
------------------------	-------------

E(level)	J^{π}	L	(2J+1)s	Comments
5136 5		1	0.12	
5158 5		1	0.054	
5210 5		1	0.10	
5340				E(level): from 1959Da02 only.

[†] From 1959En57, not resolved in 1974Fi08. [‡] Reported by 1959En57 only as a weak group. [#] Isotropic distribution from $\sigma(\theta)$. [@] From 1959En57.

 39 K(d,p γ) 1970Fr10,1973We01

1970Fr10: E=3.5, 3.7 MeV. Measured $E\gamma$, $p\gamma$ coin. 1973We01, 1970Se10: E=3.5 MeV. Measured lifetimes by DSAM. 2000E108: E=0.7-3.4 MeV. Measured thick target yields.

		⁴⁰ K Levels
E(level) [†]	$J^{\pi@}$	T _{1/2} #
0	4-	
29.6	3-	
799.9 8	2-	0.40 ps 5
891.6 2	5-	1.07 ps 17
1644	0 +	-
1958.8 9	2+	0.42 ps +28-14
2047.1 10	2-	0.31 ps 5
2069.9 13	3-	0.26 ps +14-9
2103.5 9	1-	0.36 ps 7
2261 [‡]	3+	49 fs +55-28
2290 [‡]	1 +	0.23 ps +24-12
2291 [‡]	3-	0.21 ps +12-8
2397 <i>3</i>	4-	
2419 [‡]	2-	0.28 ps +28-10
2575 [‡]	2+	0.14 ps +8-3
2625.7 10	0-	0.22 ps + 14-8
2731 [‡]	1	<80 fs
2787 [‡]	3+	<0.69 ps
2808 2		-
3110 <i>3</i>		<97 fs
3228 <i>3</i>	2-	28 fs 21
3370 5		
3629 <i>3</i>	2-,3-	<69 fs
3870 5	2-	

[†] From 1970Fr10, unless otherwise stated.
[‡] From 1973We01.
[#] From DSAM (1973We01). The uncertainties are purely statistical; 15% systematic uncertainty estimated in the evaluation of 1978En02. [@] From Adopted Levels.

			γ ⁽⁴⁰ K))		
\mathbf{E}_{i}^{level}	\mathbf{J}_i^{π}	\mathbf{E}_{f}^{level}	$\mathbf{J}_{f}^{\boldsymbol{\pi}}$	$\mathrm{E}_{\gamma}^{\dagger}$	I_{γ}^{\ddagger}	
29.6	3-	0	4-	30		
799.9	2-	29.6	3-	770.32 10	100	

\mathbf{E}_{i}^{level}	\mathbf{J}_i^{π}	\mathbf{E}_{f}^{level}	\mathbf{J}_f^{π}	$E_{\gamma}{}^{\dagger}$	I_{γ}^{\ddagger}
		0	4-	800	< 3
891.6	5-	799.9	2-	92	<4
07110	U	0	4-	891.60 20	100
1958.8	2+	799.9	2-	1158.95.30	100
2047.1	2-	799.9	2-	1247.15 30	43 4
		29.6	3-	2017.3 15	29 3
		0	4-	2047.1 10	28 3
2069.9	3-	891.6	5-	1179	72
		799.9	2-	1270	72
		29.6	3-	2040.2 10	54 5
		0	4-	2070.2 20	32 5
2103.5	1-	1644	0 +	460	<3
		799.9	2-	1303.6 4	27 5
		29.6	3-	2074.0 10	73 5
2261	3+	29.6	3-	2231	
		0	4-	2261	
2290	1 +	1644	0 +	646	
2291	3-	0	4-	2291	
2397	4-	29.6	3-	2367	
2419	2-	799.9	2-	1619	
		29.6	3-	2389	
2575	2+	29.6	3-	2545	
2625.7	0-	2103.5	1-	522.2 4	70 5
		799.9	2-	1826	30 5
2731	1	1644	0+	1087	
2787	3+	1958.8	2+	828	
2808		799.9	2-	2008 2	
3110		1958.8	2+	1151	50 15
		1644	0+	1466	50 15
3228	2-	799.9	2-	2428	20 7
		29.6	3-	3198	55 10
		0	4-	3228	25 7
3370		29.6	3-	3340	100
3629	2-,3-	2397	4-	1232	25 7
		2069.9	3-	1559	10 5
		29.6	3-	3599	20 7
		0	4-	3629	45 10
3870	2-	29.6	3-	3840	100

 γ ⁽⁴⁰K) (continued)

 † From 1970Fr10 when $\Delta(E\gamma)$ is quoted, otherwise level-energy differences. ‡ From 1970Fr10.

40 Ar(p,n γ) 1979Be41,1971We09,1970Tw01

1979Be41: E=5.75 MeV. Measured E γ , I γ , $\gamma(\theta)$, lifetimes by DSAM.

1971We09 (also 1970Ba34): E=3.7-4.9 MeV. Measured $\gamma(\theta)$.

1970Tw01 (also 1969Tw01): E=3.2-5.2 MeV. Measured E γ , I γ , $\gamma(\theta)$, $\gamma(\theta)$, γ -ray polarization correlation.

Others:.

1977St29: E=8.30 MeV. Measured $n\gamma$, $\gamma\gamma$, $\gamma\gamma(\theta)$.

1973Da18: E=5.30-6.10 MeV. Measured γ , $\gamma(\theta)$, $\gamma(\theta)$. See most details from this study in $(\alpha, n\gamma)$.

1968Ma09: E=5 MeV. Measured lifetime of 1643 level. 1959Ly68, 1959Ho96: E=2.55, 2.878 MeV. Measured lifetime of 30-keV level (1959Ly68). Two γ 's reported at 29.4 and 771 (1959Ho96).

E(level) [†]	$J^{\pi \omega}$	$T_{1/2}^{\#}$	Comments
0	4-		
29.4	3-	3.88 ns 35	$T_{1/2}$: $\gamma(t)$ (1959Ly68).
800	2-	222 fs 21	
891	5-	0.73 ps 14	
1643	0+&	0.340 µs 7	J π : 1977St29. T _{1/2} : γ (t) (1968Ma09).
1959	2+&	0.513 ps 28	
2047	2-	0.319 ps 21	
2069	3-	0.73 ps +24-15	
2104	1-	0.58 ps 8	
2261	3+&	69 fs 10	
2290	$1+^{\&}$	94 fs 12	
2291	3-	155 fs 17	Jπ: from Adopted Levels. Others: 3-,4 (1979Be41), (3,4) (1971We09), 4(3) (1970Tw01,1969Tw01).
2397	4-	<38 fs	(-,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
2419	2-	0.73 ps 11	
2543	7+		$J\pi$: adopted Levels.
			E(level): very weakly populated in $(p,n\gamma)$ (1973Da18).
2576	2+	155 fs 11	J π : from 1979Be41. Others: (2,4) (1973Da18), (2+,4+) in 1971We09.
2626	0-	215 fs 37	
2731	1	<28 fs	
2747	(2,3)-	123 fs 25	
2756	2+	<24 fs	J π : from Adopted Levels. J π =2,3- (1979Be41).
2785.6 8	(3,4)-	<28 fs	J π : from Adopted Levels. J π =3,4,5 (1979Be41).
2786.2 5	3+	<38 fs	J π : from Adopted Levels. J π =2-,3 (1979Be41).
2808	(1,2)-	0.16 ps 4	
2879	6+		Populated weakly in $(p,n\gamma)$ (1973Da18); also reported by 1977St29.
			$J\pi$: from adopted level. Other: $J\pi$ =4,6 (1973Da18).
3147‡	1		
4384.0 3	0+		T=2.
			E(level): from 1977St29.

⁴⁰K Levels

[†] From 1979Be41, unless otherwise stated.

[‡] From 1973Da18.

[#] From DSAM (1979Be41), except as noted. The uncertainties are purely statistical; 15% systematic uncertainty is estimated in the evaluation of 1978En02.

Above 30-keV level, the assignments are from from $\gamma(\theta)$ data of 1979Be41, 1971We09 and 1970Tw01.

& Positive parity from γ -ray polarization correlation (1970Tw01, 1969Tw01).

	$\underline{\gamma(^{40}\mathrm{K})}$											
\mathbf{E}_{i}^{level}	\mathbf{J}_i^{π}	\mathbf{E}_{f}^{level}	J_f^π	$E_{\gamma}{}^{\dagger}$	I_{γ}^{\ddagger}	Mult. [‡]	δ^{\ddagger}	Comments				
29.4 800	3- 2-	0 29.4	4- 3-	29.4 <i>10</i> 770	100 100	D(+Q)	0.00 1	E_{γ} : from 1959Ho96. δ: from 1970Tw01. Other: 0.00 <i>3</i> (1971We09). A ₂ =-0.09 <i>I</i> , A ₄ =0.00 <i>I</i> (1970Tw01).				

\mathbf{E}_{i}^{level}	\mathbf{J}_i^{π}	\mathbf{E}_{f}^{level}	J_f^{π}	$E_{\gamma}{}^{\dagger}$	I_{γ}^{\ddagger}	Mult. [‡]	δ^{\ddagger}	Comments
891	5-	0	4-	891	100	D+Q	+0.11 5	$\delta: A_2 = -0.10 \ I, A_4 = 0.00 \ I$
1643	0+	800 29.4	2- 3-	843 1613	16 2 84 2			(1971 we09).
1959	2+	800	2-	1159	82 2	D(+Q)	0.00 5	δ: other: 0.00 2 (1970Tw01), 0.00 3 (1971We09). A ₂ =+0.33 <i>I</i> , A ₄ =+0.01 <i>I</i> (1979Be41). POL=-0.75 20 (1970Tw01)
		29.4	3-	1929	18 2	D+Q	+0.11 3	$\begin{array}{c} \text{S: other: +0.10 4} \\ (1970\text{Tw01}), +0.10 5 \\ (1971\text{We09}). \\ \text{A}_2 = -0.21 I, \text{A}_4 = -0.01 I \\ (1979\text{Re}^{41}) \end{array}$
2047	2-	800	2-	1247	40 2	D(+Q)	+0.05 8	δ : or +0.66 41. Others: +0.13 9 (1970Tw01), +0.10 +5-10 (1971We09). A ₂ =+0.47 3, A ₄ =+0.03 2 (1979Re41)
		29.4	3-	2017	31 2	D(+Q)	0.00 2	δ : or +0.09 4, -5.7. Others: +0.01 2 (1970Tw01), +0.05 3 or -9.0 20 (1971We09). A ₂ =-0.12 2, A ₄ =-0.04 2 (1979Be41)
		0	4-	2047	29 2	Q		$A_2 = +0.16 3, A_4 = 0.00 4$
2069	3-	891	5-	1178	31	Q		A_2 =-0.18 7, A_4 =0.00 5 (1971We09). Note that sign of A_2 in 1971We09 seems in error since it is expected to be positive for $A_2 = 0$ transition
		800	2-	1269	62	D+Q	-0.20 10	δ: from 1970Tw01. Other:-0.05 15 (1971We09). A ₂ =-0.69 10, A ₄ =+0.09 12 (1970Tw01)
		29.4	3-	2039	50 <i>3</i>	D+Q	+0.27 10	δ : from 1970Tw01. Other: +0.25 <i>15</i> (1971We09). A ₂ =+0.61 <i>4</i> , A ₄ =-0.01 <i>5</i> (1970Tw01)
		0	4-	2069	41 5	D+Q	-0.07 5	δ : from 1970Tw01. Other: -0.07 10 (1971We09). A ₂ =-0.03 4, A ₄ =+0.01 5 (1970Tw01)
2104	1-	800	2-	1304	29 4	D(+Q)	+0.30 6	(19701w01). δ : from 1970Tw01. Others: +1.0 5 (1971We09); +0.05, -0.53, -1, -4.3 (1979Be41). A ₂ =-0.12 <i>I</i> , A ₄ =0.00 <i>I</i> (1970Tw01).
		29.4	3-	2074	71 4	Q		$A_2 = +0.01 2, A_4 = +0.01 2$ (1970Tw01)
2261	3+	29.4	3-	2231	83 2	D(+Q)	+0.01 9	δ : others: +0.02 5 (1970Tw01), 0.00 10 (1971We09). A ₂ =+0.44 3, A ₄ =-0.03 2 (1979Be41). POL=-0.57 30 (1970Tw01).

				-				
\mathbf{E}_{i}^{level}	J_i^π	\mathbf{E}_{f}^{level}	\mathbf{J}_f^{π}	${\rm E}_{\gamma}^{\dagger}$	I_{γ}^{\ddagger}	Mult. [‡]	δ^{\ddagger}	Comments
		0	4-	2261	17 2	D(+Q)	-0.05 6	δ : others: -0.04 6 (1970Tw01), 0.00 5 (1971We09). A ₂ =-0.05 3, A ₄ =-0.04 3 (1979Be41).
2290	1+	1959 1643	2+ 0+	331 647	4 2 60 2	D		$A_2 = -0.10 I, A_4 = +0.05 2$
		800	2-	1490	36 <i>3</i>	D+Q	+0.14	(1979Be41). δ : others: >+0.3 (1970Tw01), +0.15 15 or <-3.0 (1971We09), -0.02 5 (1973Da18). A ₂ =-0.05 2, A ₄ =-0.01 2 (1970B 41)
2291	3-	891	5-	1400	16 2			(1979Be41). A ₂ =+0.13 <i>11</i> , A ₄ =-0.11 <i>12</i> (1973Da18)
		0	4-	2291	84 2	D+Q	-0.8 +3-5	δ : for J=3. Others: -1.0 3 (1970Tw01,1971We09), -0.6 +1-8 (1973Da18). For J=4, δ =+0.02 +30-12 or +0.67 3 (1979Be41); +0.35 25 (1970Tw01); 0.00 10 (1971We09); -0.02 +9-5 (1973Da18). A ₂ =+0.50 3, A ₄ =-0.07 4
2397	4-	29.4	3-	2367	71 2	D+Q	+0.25 4	(1979Be41). δ: other: +0.27 6 (1973Da18). A ₂ =+0.21 3, A ₄ =-0.07 3
		0	4-	2397	29 2	D+Q	-0.32 12	(1979Be41). δ : +2.4 5 (1973Da18). A_2 =+0.19 5, A_4 =-0.08 6
2419	2-	800	2-	1619	79 2	D+Q		(1979Be41). $\delta: -0.03 \ 13 \text{ or } +2.2 \ 7.$ Others: $+0.07 \ 5 \text{ or } +1.8 \ 2$ (1973Da18), $+0.05 \ 10 \text{ or}$ $+2.0 \ 6 \ (1970Tw01).$ A ₂ = $+0.32 \ 3, A_4=-0.01 \ 2$
		29.4	3-	2389	15 2	D+Q		(1979Be41). δ : -0.25 or -2.6. Other: -0.8 5 (1973Da18). A ₂ =+0.22 3, A ₄ =+0.03 3
		0	4-	2419	6 1	Q(+O)	+0.17 28	(1979Be41). δ : other: 0.00 +15-30 (1973Da18). A ₂ =+0.06 6, A ₄ =-0.13 7
2543	7+	891	5-	1652 ^{<i>a</i>}	88 2 ^a			(1979Be41). δ : +1.0 +2-4 for J=5 (1973Da18). A ₂ =+0.41 6, A ₄ =-0.17 7 (1973Da18).
2576	2+	0 29.4	4- 3-	2542 ^a 2546	12 2 ^a 100	D(+Q)		δ : +0.03 +7-4 or -7.6 +13-20. Others: +0.08 3 (1970Tw01); 0.00 3 (1973Da18). For J=4, δ =+0.06 2 (1970Tw01); +0.09 4 (1973Da18). A ₂ =-0.13 1, A ₄ =-0.01 1 (1979Be41)
2626	0-	2104	1-	522	69 2	D		$A_2 = -0.01 4, A_4 = +0.03 4$ (1979Be41).

\mathbf{E}_{i}^{level}	\mathbf{J}_i^{π}	\mathbf{E}_{f}^{level}	\mathbf{J}_f^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	Mult.‡	δ^{\ddagger}	Comments
		800	2-	1826	31 2	Q		A ₂ =-0.09 <i>14</i> , A ₄ =+0.21 <i>16</i> (1979Be41).
2731	1	1959 1643	2+ 0+	772 ^b 1088	94 <i>4</i>	D		I_{γ} : other: 73 9 (1977St29). See comment for 772 γ . A ₂ =-0.13 4, A ₄ =-0.03 5 (1970St29)
2747	(2,3)-	800 2069 1959 29 4	2- 3- 2+ 3-	1931 678 788 2717	6 4 <3 4 1 63 3	D+O		(1979Be41). I _Y : other: 4 3 (1977St29). $\delta: 0.0.1$ for I=2 -0.19.14
		27.7	5-	2/1/	05.5	DIQ		or $-3.4+13-29$ for J=3. Other: $-1.2 + 8-5$ for J=2, -0.09 + 18-9 for J=3, $+0.367 for J=4 (1973Da18).A2=+0.30 3, A4=-0.01 4(1979Be41)$
		0	4-	2747	33 3	D+Q		$5: -0.87 + 5 \cdot 16$ for J=2, -0.18+11-18 for J=3. Other: -0.09 +12-8 for J=2, -0.27 8 or -2.8 +5-8 for J=3, -0.27 +15-9 for J=4 (1973Da18).
2756	2+	800	2-	1956	66 2	D+Q		A ₂ =+0.12 5, A ₄ =+0.02 5 (1979Be41). δ : +0.19 +19-26 or -2.1 +13-7 (1979Be41). Other: -0.02 7 or -1.7 +5-3 for J=2 (1973Da18). For J=3, δ =+0.45 11 (1979Be41), +0.26 5 (1072De18)
		29.4	3-	2726	34 2	D+Q		+0.56 5 (1973Da18). A_2 =+0.38 4, A_4 =+0.01 4 (1979Be41). δ : 0.00 12 or -4.7 +20-144 (1979Be41). Other: 0.00 3 (1973Da18). For J=3, δ =-0.47 +9-23 or +5.1 +63-24 (1979Be41); -0.52 +8-12 (1973Da18). A_2 =-0.02 3, A_4 =-0.11 4
2785.6	(3,4)-	2291	3-	496	40 8			(1979Be41).
		0	<u>4</u> -	2786	41 8	D+Q		$\begin{array}{l} \delta:>+0.09 \text{ or } <+19 \text{ for} \\ J=3, <-0.81 \text{ or } >+4.9 \text{ for} \\ J=4, -0.19+19-34 \text{ or } -1.8 4 \\ \text{ for } J=5. \\ A_2=-0.58 13, A_4=-0.11 4 \end{array}$
2786.2	3+	1959	2+	828	22 3	D+Q	-0.09 7	(1979Be41). δ : from A ₂ =-0.44 9, Δ = 0.11 0 (1072D-18)
		29.4	3-	2756	78 <i>3</i>	D+Q		A ₄ =-0.11 9 (19/3Da18). δ : +0.03 14 or +1.1 4 (1979Be41). Other: +0.09 11 (1973Da18). For J=2, δ =-0.81 34 (1979Be41). A ₂ =+0.43 2, A ₄ =-0.06 2 (1979Be41)
2808	(1,2)-	800	2-	2008 ^a	100 ^a			δ : -0.09 to -2.14 for J=1; -0.27 5 or +5.7 +24-14 for J=2 (1973Da18).

\mathbf{E}_{i}^{level}	\mathbf{J}_i^{π}	\mathbf{E}_{f}^{level}	$\mathbf{J}_f^{\boldsymbol{\pi}}$	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	Mult.‡	δ^{\ddagger}	Comments
2879	6+	2543 891	7+ 5-	336 ^a 1987 ^a	62 4^a 38 4^a	D(+0)	-0.09.9	$A_2=+0.07 2, A_4=+0.02 2$ (1973Da18). $\delta < 0.10$ (1973Da18). $\delta \cdot A_2=-0.05 14, A_4=-0.06$
3147	1	1643	0+	1503 ^a	33 5 ^a	D(+Q)	-0.07 9	15 (1973Da18). Mult.: A ₂ =-0.37 9,
		800	2-	2347 ^a	67 5 ^a	D+Q	+0.1 2	A_4 =-0.19 <i>10</i> (1973Da18). δ : A_2 =-0.04 <i>3</i> , A_4 =-0.08
4384.0	0+	2731	1	1653	24 <i>3</i> ^c			3 (1973Da18). (1653 γ)(1087 γ)(θ):
		2290	1+	2094	76 <i>3</i> ^c			$\begin{array}{l} A_2 = +0.42 \ I9 \ (19778129). \\ (2094\gamma)(646\gamma)(\theta): \\ A_2 = +0.42 \ I0 \ (19778129). \end{array}$

[†] From level energy differences. [‡] From 1979Be41, unless otherwise stated. ^{*a*} From 1973Da18. The energies are rounded off. The precise $E\gamma'$ s and branching ratios given by 1973Da18 are most likely from their $(\alpha, n\gamma)$ experiment.

^b γ reported only by 1977St29 with I γ =23 8. With this large intensity, this γ should have been seen in the high-resolution (n, γ) experiment where only one γ ray at 770.3053 is reported. Thus this γ ray is considered as suspect by the evaluators. ^c From 1977St29.

⁴⁰Ar(³He,t) 1968We09

1968We09: E=17.9 MeV. Measured $\sigma(\theta)$, FWHM=150 keV, DWBA analysis. Others:.

1972FaZT: E=35 MeV; measured $\sigma(\theta)$ for.

1650 and 4380 levels.

1970Hi06: E=35 MeV. Measured $\sigma(\theta)$ for 0+ analog and antianalog states.

1970No05: analyzed shapes of $\sigma(\theta)$ distributions.

⁴⁰K Levels

E(level)	$J^{\pi\dagger}$	L	$d\sigma/d\Omega$ (max) mb/sr [‡]	Comments
0 ^c	4-&3-	3+5	0.025 ^{&}	
840 20 ^d	2-&5-	3+5	0.010 ^a	
1650 20	0+		0.057 [@]	Antianalog state (1970Hi06).
1960 20	2+	2+4	0.063#	
2290 20			$0.08^{\#}$	
2770 20			0.15#	
3080 20			$0.09^{\#}$	
3440 20			0.08^{b}	
3730 20			0.09#	
4380 20	0+	0	$0.60^{@}$	E(level): analog state.
5870 20				-

[†] From Adopted Levels.

[‡] Read off the differential cross section plots.

 $^{\#}$ At 20°.

[@] At 0°.

& At 25°.

^a At 30°.

^b At 23°.

^c Doublet: 0+28.

^d Doublet: 800+891. ^e $\sigma(\theta)$ and DWBA comparisons fit L=1 (1968We09,1970Hi06), rather than L=0 shape. The shapes of the $\sigma(\theta)$ (θ) = 14200 (τ) = 14 distributions for the 1650 (antianalog state) and 4380 (analog state) are in antiphase (1970Hi06,1972FaZT). 1970Hi06 suggested that modifications were needed in the conventional description of the (³He,t) reaction, but 1970No05 pointed out that the observed $\sigma(\theta)$ shape for antianalog states can be understood on the basis of structural relation between analog and antianalog states together with the assumption of a pure charge-exchange mechanism.

40 K(γ , γ):Mossbauer 2000Se01,1965Ru02,1965Ha14

2000Se01, 2002Se12: level populated by synchrotron radiation, measured E γ , T_{1/2}. 1965Ru02: measured scattering at 90°. 1965Ha14: measured absorption; deduced isomer shift, linewidth. Other: 1968Ts01.

40 K Levels

E(level)	$J^{\pi \dagger}$	T _{1/2}	Comments
0	4-		
29.834 11	3-	4.13 ns 12	T _{1/2} : from 2000Se01 and 2002Se12. Other: 4.3 ns 9 (1965Ha14).

[†] From Adopted Levels.

					$\gamma^{(40}$ K)
\mathbf{E}_{i}^{level}	\mathbf{J}_i^{π}	\mathbf{E}_{f}^{level}	\mathbf{J}_f^{π}	Eγ	Comments
29.834	3-	0	4-	29.834 11	E_{γ} : from 2000Se01 and 2002Se12.

1972Di10,1967An07

1972Di10: (p,nγ) E=4.85-8.05 MeV. Natural target. Measured Eγ, Iγ, cross sections at 4.85, 5.40, 5.90, 6.45, 7.00, 7.50 and 8.05 MeV. 1967An07: (n,p) E=14.4 MeV. Measured E(p), $\sigma(\theta)$, FWHM=600 keV.

Others:. 1992Pa06: (n,p) E=60-260 MeV. Measured $\sigma(\theta)$, deduced distributions of Gamow-Teller (>) ($\Delta L=0, \Delta S=1, \Delta J=1$) strength, Giant-dipole resonance (GDR, \DeltaS=0), and Giant-spin dipole resonance (GDSR, \DeltaS=1).

1980Ba50: (n,p) E=2.7-5.5 MeV. Measured σ .

1974Ba16: (n,p) E=2.41-2.86 MeV. Measured σ .

1972Fo21, 1961Ur03: (n,p) E=5.85 MeV. Measured $\sigma(\theta)$ for 0+30 doublet.

1969Wi12: (n,p) E=14.6 MeV. Measured $\sigma(\theta)$.

1968Ka05: (n,p) E=14.1 MeV. Measured $\sigma(\theta)$.

1967Me11: (n,p) E=152 MeV. Measured proton spectrum.

1956Da23: (n,p γ) E=2.557 MeV. Three γ 's reported at 30, 767 and 877 from first three excited states.

 40 Ca(n,p γ),(n,p)

⁴⁰K Levels

E(level) [‡]	$J^{\pi \dagger}$	Comments
0	4-	
30	3-	Total cross section for g.s.+30=365 mb 27 at E(n)=5.85 MeV (1972Fo21).
800	2-	$J\pi$: $\sigma(\theta)$ in 1992Pa06.
891	5-	
1644	0+	
1959	2+	
2048	2-	
2070	3-	
2103	1-	
2261	3+	
2290	1 +	
2291	3-	
2397	4-	
2419	2-	
2558#		
2577	2+	
2626	0-	
2757	2+	
2808		

[†] From Adopted Levels.

[‡] g.s.+30, and 800+891 are unresolved in (n,p) (1967An07). [#] Level not reported in any other study of ⁴⁰K, it is considered as suspect by the evaluators.

$\underline{\gamma}^{(40}\mathrm{K})$									
\mathbf{E}_{i}^{level}	\mathbf{J}_i^{π}	\mathbf{E}_{f}^{level}	\mathbf{J}_f^{π}	E_{γ}	$d\sigma/d\Omega~(mb/sr).^{\ddagger}$	Comments			
Unplaced	_		_	828 2	0.32 11				
- I				870 2	0.37 12				
				979 2	0.35 12				
				1332 2	0.25 10				
				1434 2	0.58 14				
				1453 2	0.40 12				
				1694 2	0.40 12				
				1881 2	0.43 13				
				2939 <i>2</i>	0.34 13				
				3475 2	0.33 13				
30	3-	0	4-	30 2		E_{γ} : from 1956Da23.			
800	2-	30	3-	770	17.0 17				
891	5-	0	4-	891	3.6 4				
1959	2+	800	2-	1159	$6.1 \ 6^{a}$				
	_	30	3-	1929	0.87 9				
2048	2-	800	2-	1248	1.07 13				
		30	3-	2018	0.79 12				
2070	2	0	4-	2048	0.86 12				
2070	3-	800	2-	1270	0.52 12				
		30	3-	2040	2.07 23				
2102	1	0	4-	2070	≈ 1.45				
2103	1-	30 20	3- 2	2075	≈ 0.75				
2201	3+ 1+	50 1644	3- 0+	2231 646	0.03 22				
2290	2	0	4	040	0.75 10				
2291	3-	0	4-	2291 2267d	0.70 15				
2397	4-	30	3-	236/ ^a	0.80 10				
2419	2-	800	2- 4	1019	1.15 20				
2338	2	20	4-	2338	0.21 9				
2511	2+ 0	3U 2102	3- 1	∠341 522	1.30 19				
2020	0- 2⊥	2103	1- 2_	1057	0.30 13				
2131	2T	800	2-	2000d	1 02 12				
2000		000	Z- 4	2008 2008	1.05 12				
		0	4-	2808"	0.13 14				

[‡] From 1972Di10, at E(n)=7.50 MeV, unless otherwise stated. 1972Di10 give cross section data at E(n)=4.85, 5.45, 5.90, 6.45, 7.00 and 8.05 MeV also.
^a May contain some contribution from ⁴⁴Ca.
^b At E(n)=5.90 MeV.
^c At E(n)=7.00 MeV.

 d Wide peak at all neutron energies, may have another component. e 2070 and 2073 are unresolved.

⁴⁰Ca(pol d,2p),(d,2p) 1990MaZN

1990MaZN: (pol d,2p) E=56 MeV: measured $\sigma(\theta)$, analyzing powers, FWHM=400 keV. 1988BaZW: (pol d,2p) E=650 MeV; measured tensor analyzing power. 1980StZO: (d,2p): E=60 MeV. Measured $\sigma(\theta)$.

0

⁴⁰K Levels \mathbf{J}^{π} E(level) 800 2300

40 Ca(t,³He) 1985Aj03

1985Aj03: E=25 MeV. Measured $\sigma(\theta)$, comparison with coupled- channel calculations.

Other:. 1991Pi09: E=33 MeV. Measured $\sigma(\theta)$, FWHM=100 keV, fits to cross sections included finite range and multi-step DWBA. First four states studied.

⁴⁰ K Levels							
E(level)	$J^{\pi \#}$	L	Comments				
0	4-	3+5					
31 5	3-	3					
800 5	2-	1+3					
891 <i>5</i>	5-	5					
1642 8							
1959 8	2+	2					
2055 <i>15</i> ‡			E(level): corresponds to 2047+2070.				
2091 20	1-	1					
2265 15^{\dagger}							
2288 20 [‡]	1+	$0+2^{\&}$	E(level): corresponds to 2290+2291				
2390 10		$1+3^{@\&}$					
2390 10	2	$1+3^{0}$					
2411 15 2524 15 [†]	2-	1 ± 3					
2554 15							
2500 15							
2000 15	1()	1					
2724 13	1(-)	1					
2807 20							
2865 20	6+						
2938 20	01						
3017 15							
3100 15							
3120 15							
3216 15	2-	1+3					
3272.15	2	(0+2)					
3360 15		(012)					
3391 20							
3465 15‡	2-		E(level): corresponds to 3439+3486				
3517 15	-						
3618 15 [‡]		1_2&	$I\pi$: 2-823- possible				
5010 15		1+5	F(level): corresponds to 3599+3630				
3653 20			Elevery. corresponds to 3577+3030.				
3715 15							
3780 30 [±]							
$3760 \ 30^{\circ}$		1 &	E(1,,1),, $E(1,,1)$, $E(2,0,0)$, $20(0,0)$				
2002 15		1	E(level). corresponds to 5840+5809.				
2005 15							
3995 <i>13</i> *							
4091 15*			E(level): corresponds to $40/6+4105$.				
4190 201							
4237 15	1-	1					
4277 15	2-	1+3					
4335 15							
43/4 13							
4455 15							
4508 15							
4535 15							
4/81 13			O(0) is not forward peaked.				

[†] Weak group, observed at several angles.
[‡] Unresolved states.
[#] From Adopted Levels.
[@] For 2390+2411.

[&] $\sigma(\theta)$ is of unresolved group.

⁴⁰Ca(⁷Li,⁷Be)

1979Wi01: E=35 MeV. Measured $\sigma(\theta)$. 1996Wi05: E=490 MeV. 1986NaZW: E=150 MeV.

40K Levels

E(level)	J^n	Comments
15 [†]		E(level): 0+30.
850^{\dagger}		E(level): 800+891.
1960^{\dagger}		
2270^{\dagger}		E(level): 2260+2290.
7000 [‡]		
11000‡		E(level): T=2 analog of GDR in 40 Ca.

[†] From 1979Wi01.

[‡] From 1996Wi05.

40 Ca(12 C, 12 N),(13 C, 13 N) 1988Vo06,1993Be19

1988Vo06: (${}^{12}C, {}^{12}N$) E=70 MeV/nucleon. Measured $\sigma(\theta)$, FWHM \approx 300 keV. Deduced spin-flip giant resonance. 1993Be19 (also 1989Be50): (${}^{13}C, {}^{13}N$) E=50 MeV/nucleon. Measured energy of the GDR, IAS.

			⁴⁰ K Levels
E(level)	$J^{\pi \#}$	$T_{1/2}^{\ddagger}$	Comments
0^{\dagger}	4-		
30†	3-		
740^{+}	2-		
890 [†]	5-		
$11 \times 10^3 4$			E(level): wide bump (1988V006) interpreted as spinflip giant-dipole resonance split into several states of $J\pi$ =0-,1-, and 2
$12.0 \times 10^3 \ 3$		3.1 MeV 2	E(level): from 1993Be19. Corresponding energy of GDR in ⁴⁰ Ca=19.7 MeV 3.

[†] g.s.+30 and 740+890 are unresolved structures.
[‡] Γ.
[#] From Adopted Levels.

⁴¹K(n,2n),(n,2n γ) 1972Ad01

1972Ad01: $(n,2n\gamma)$ E=14.7 MeV. Measured $n\gamma(t)$. 1979Ha60: (n,2n), (n,2n γ) E=14.9 MeV. Measured cross section and n γ (t).

			⁴⁰ K Levels
E(level)	J^{π}	$T_{1/2}$	Comments
0^{\dagger}	_		
30^{\dagger}			
850			E(level): doublet 800+890.
1640		294 ns 23	T _{1/2} : from 1972Ad01. Other: 0.26 µs 15 (1979Ha60)

[†] Unresolved doublet.

 $^{40}_{19}\text{K}_{21}$ -46

 $J\pi$ (⁴¹K g.s.)=3/2+. 1973Wi16 (also thesis by 1973WiYW): E=15 MeV. Measured $\sigma(\theta)$, FWHM=15-30 keV, DWBA analysis.

				⁴⁰ K Levels
E(level) [†]	$\mathrm{J}^{\pi\dagger}$	L	C^2S^{\ddagger}	Comments
0#	4-	3	0.51 12	
30#	3-	3	0.53 11	
800	2-	3+1	0.074 10	S: for L=3; 0.012 3 for L=1.
891	5-	3	0.28 5	

 † From Adopted Levels. $^\ddagger f_{7/2}$ orbital assumed for L=3 and $p_{3/2}$ orbital for L=1.

[#] Unresolved structure.

⁴¹**K(d,t)** 1973Wi16

 $J\pi$ (⁴¹K g.s.)=3/2+. 1973Wi16 (also thesis by 1973WiYW): E=15 MeV. Measured $\sigma(\theta)$, FWHM=15-30 keV, DWBA analysis.

				⁴⁰ K Levels
$E(level)^{\dagger}$	$J^{\pi \ddagger}$	L	$C^2S^{\#}$	Comments
0	4-	3	0.61 9	
30	3-	3	0.60 9	
800	2-	3+1	0.074 10	S: for L=3, 0.0053 10 for L=1.
891	5-	3	0.34 5	
1644	0+	2	0.06 2	
1959	2+	2+0	0.07 2	S: for L=2, 0.015 5 for L=0.
≈ 2000				E(level): multiplet.
2260	3+	2	0.86 <i>3</i>	
2290	1 +	2(+0)	0.09 2	S: for L=2, 0.11 20 for L=0.
2385 10		2	0.16 6	
2566 10		2	0.07 2	

[†] From Adopted Levels where uncertainty is not stated.
[‡] From Adopted Levels.

[#] The following orbitals are assumed for different L transfers: $s_{1/2}$ for L=0, $p_{3/2}$ for L=1, $d_{3/2}$ for L=2, $f_{7/2}$ for L=3.

41 Ca(d, ³He) 1979Ro05

J π (⁴¹Ca g.s.)=7/2-. 1979Ro05: E=20 MeV. Measured $\sigma(\theta)$, FWHM=15-20 keV, DWBA analysis. 1975Be45: E=40 MeV. Measured $\sigma(\theta)$, FWHM=15-20 keV, DWBA analysis.

		40 K	Levels
E(level)	$J^{\pi\dagger}$	L	C^2S^{\ddagger}
0	4-	2	1.03 12
30	3-	2	0.86 6
800	2-	2	0.57 7
892	5-	2	1.46 17
2070	3-	0	0.30 2
2398	4-	0	0.73 8
2800	(3,4)-	0	0.61 23

[†] From Adopted Levels.
[‡] Relative values. The absolute spectroscopic factors are 19% lower with an uncertainty of 20% (1979Ro05).

⁴²Ca(p,³He) 1970Ha10,1970Ko13

1970Ha10: E=45 MeV. Measured $\sigma(\theta)$, deduced T=2 isobaric analog states. 1970Ko13: E=40 MeV. Measured $\sigma(\theta)$, deduced L-transfers. 1972DeYF: E=41.7 MeV. Measured $\sigma(\theta)$.

⁴⁰K Levels

E(level)	J^{π}	L	Comments
0	4-	_	$J\pi$: from Adopted Levels.
1640	0+	0	$J\pi$: 0+ is confirmed by characteristic L=0 shape and is consistent with its
2290			Doublet: 2290+2291.
4375 25	0+	0	E(level): from 1970Ha10, interpreted as T=2 analog state. $J\pi$: from L=0 transfer.
⁴²Ca(pol d, α),(d, α) 1981Sh12

1981Sh12: (pol d, α), (d, α) E=7-10 MeV. Measured $\sigma(\theta)$, tensor analyzing power at 4°, FWHM=15-20 keV.

Other:. 1971Pa16: (d, α) E=11.0 MeV. Measured $\sigma(\theta)$, FWHM=30=40 keV. About ten groups reported up to about 4 MeV excitation energy.

 $\frac{40 \text{K Levels}}{\text{which is consistent with its interpretation by 1981Sh12 as an antianalog state of 4380, 0+ level in ⁴⁰Ar.}$

E(level)	$J^{\pi \ddagger}$	Comments
0	UNNATURAL	$< T_{20} > = -0.57 \ 25.$
29 5	NATURAL	$\langle T_{20}^{20} \rangle = +0.67 \ 28.$
800 5	UNNATURAL	$\langle T_{20}^{2} \rangle = -0.47$ 22.
888 5		
1959 5	NATURAL	$< T_{20} > = +0.71 \ I8.$
2049 5	UNNATURAL	$\langle T_{20}^{-} \rangle = -0.29 \ 21.$
2262 5	UNNATURAL	$\langle T_{20}^{-} \rangle = -1.01 \ 17.$
2289 5 [†]		E(level): possibly 2290+2291.
2400 5	UNNATURAL	$\langle T_{20} \rangle = -0.87 \ 12.$
2413 5	UNNATURAL	$\langle T_{20}^{-} \rangle = -1.14 \ I8.$
2545 5	UNNATURAL	$\langle T_{20} \rangle = -0.45 \ 14.$
2574 5		
2634 5	0-	J π : from Adopted Levels.
		$< T_{20} > = -1.50 \ 24.$
2747 <i>5</i> †		E(level): possibly 2748+2756.
2798 <i>5</i> †		E(level): possibly 2786+2787.
2811 5		
2990 5	UNNATURAL	$< T_{20} > = -0.01 \ 23.$
3033 5	UNNATURAL	$< T_{20} > = -0.04 \ I8.$
3096 <i>10</i> †		E(level): possibly 3100+3110.
3125 10		
3156 <i>10</i> [†]		E(level): possibly 3146+3154.
3236 10	UNNATURAL	$< T_{20} > = +0.29 \ 30.$
3293 10	UNNATURAL	$< T_{20} > = -0.19 \ 27.$
3369 10		
3389 10	UNNATURAL	$< T_{20} > = +0.17$ 22.
3415 10		
3448 10	UNNATURAL	$< T_{20} > = -0.45$ 18.
3491 10	UNNATURAL	$ =+0.25 \ I3.$
3568 10	(NATURAL)	$<1_{20}>=+0.64$ 27.
3618 101	UNNATURAL	$< T_{20} > = -0.47/23.$
2602 10		E(level): possibly 3599+3630.
3682 10		AT > 0.10.20
3/10/10	(UNNATURAL)	$<1_{20}>=-0.1028.$
3/3/10	UNNAI UKAL	$<1_{20}>=-0.2$ 0.
3710 10	(UININAI UKAL)	$<1_{20}>=+0.17$.
3821 10	UNNATURAL	<120>-0.0423. -0.0020
3860 10	(NATURAL)	<120>-0.0020. $-+0.03$
3802 10	(IVII OIXIL)	$(120)^2 = +0.55$. $F(1_{20})^2 = +0.55$.
3692 10		$Z_{\text{Tex}} > -\pm 0.6.5$
3921 10	(IINNATURAI)	$ -+0.05$.
3996 10	LINNATURAL	$\langle T_{20} \rangle = -0.13$
4033 10	(IINNATURAL)	$< T_{20} > -0.15$.
4071 10	(or an orall)	$< T_{20} > = -0.79 \ 19$
4118 10	UNNATURAL	$\langle T_{20} \rangle = +0.07 \ I5.$
4154 10	(UNNATURAL)	$\langle T_{20} \rangle = -0.05 \ 10.$
4181 10	. ,	

E(level)	$J^{\pi \ddagger}$	Comments
4217 10	UNNATURAL	$< T_{20} > = +0.4 4.$
4255 10	(UNNATURAL)	$\langle T_{20}^{20} \rangle = -0.30 \ 25.$
4310 10	UNNATURAL	$\langle T_{20}^{2} \rangle = -0.60 \ 19.$
4362 <i>10</i> [†]	UNNATURAL	$\langle T_{20} \rangle = -0.21 \ 26.$
		E(level): possibly 4352+4366.
4398 <i>10</i> [†]	(UNNATURAL)	$\langle T_{20} \rangle = -0.22$ 19.
		E(level): possibly 4384+4396.
4470 10	NOT 0-	$< T_{20} > = +0.42$ 16.
4535 10	UNNATURAL	$< T_{20} > = -0.04$ 75.
4590 10	UNNATURAL	$< T_{20} > = +0.11 \ I4.$
4663 10	UNNATURAL	$< T_{20} > = -0.22 \ II.$
4697 10	UNNATURAL	$< T_{20} > = -0.5 \ 3.$
4749 10		
4762 10	(UNNATURAL)	$< T_{20} > = -0.03 \ 21.$
4786 10	(UNNATURAL)	$< T_{20} > = -0.38 \ 26.$
4827 10	UNNATURAL	$< T_{20} > = +0.30 \ 10.$
4848 <i>10</i>		
4873 <i>10</i> †		E(level): possibly 4874+4876.
4930 10	UNNATURAL	$< T_{20} > = +0.38 \ 9.$
4942 10	(UNNATURAL)	$< T_{20} > = -0.15 \ 28.$
4995 10	UNNATURAL	$< T_{20} > = -0.7 4.$
5030 10		
5068 10	UNNATURAL	$< T_{20} > = -0.66$ 16.
5111 <i>10</i> [†]	UNNATURAL	$< T_{20} > = -0.21 \ 9.$
		E(level): possibly 5112+5132.
5169 10		
5212 <i>10</i>	UNNATURAL	$< T_{20} > = -0.36 \ I3.$

⁴⁰K Levels (continued)

[†] Unresolved multiplet. [‡] From average tensor analyzing powers ($\langle T_{20} \rangle$) at 4°, averaged over 4 or 5 (in some cases 3) energies. Except for 2633 and 4033 levels, $J\pi$ =0- is not allowed by the measured $\langle T_{20} \rangle$. In most cases of unnatural parity, $J\pi$ =2- when combined with restrictions from other experiments.

 ${}^{40}_{19}\text{K}_{21}$ -50

$(HI,xn\gamma)$ 1977Eg01,1981He20

1977Eg01: ²⁶Mg(¹⁶O,np γ) E=34 MeV. Measured E γ , I γ , γ , $\gamma(\theta)$, $\gamma(\text{lin pol})$. 1981He20: ²⁷Al(¹⁹F, α pn γ) E=70 MeV. Measured E γ , I γ , γ , $\gamma(\theta)$.

Others:.

1991Ja11: 27 Al(16 O,n2p γ) E=60 MeV. Measured lifetime of 892, 2543 and 4366 levels by recoil-distance method (RDM).

1990Ki04: ²⁷Al(¹³C, γ) E=39.7 MeV. Measured methic of 892, 2543 and 4500 levels by recon-distance method (RDM). 1990Ki04: ²⁷Al(¹³C, γ) E=39.7 MeV. Measured continuum γ , $\gamma(\theta)$; deduced GDR parameters and strength function. 1981Le19: ²⁴Mg(¹⁸O,np γ) E=36 MeV. Measured $\gamma(\theta,H)$ by recoil into gas, deduced g factor of 2543 level. 1976Bo21, 1975Bo44: ²⁷Al(¹⁶O,n2p γ) E=30-35 MeV; ²⁸Si(¹⁴N,2p γ) E=38 MeV; ²⁴Mg(¹⁹F,n2p γ) E=42 MeV. Measured $\gamma(\theta,H)$, deduced g factor of 2543 level and hyperfine perturbations.

1976Ra05: 27 Al(16 O,n2p γ) E=32.5 MeV. Measured $\gamma(\theta,t)$ for recoil in vacuum, deduced lifetime of 2543 level and hyperfine deorientation. 1976Ke02: 27 Al(16 O,n2p γ) E=32.5-44 MeV. Measured γ , lifetimes by recoil-distance method.

40

.

			⁴⁰ K Levels
E(level)	$\mathrm{J}^{\pi\dagger}$	$T_{1/2}^{\ddagger}$	Comments
0.0	4-@		
30	3-@		
891.45 15	5-	2.3 ps 10	
2542.77 17	7+	1.10 ns 7	$T_{1/2}$: others: 1.10 ns 8 (1976Ke02); 1.10 ns 8, 1.06 ns 7 (apparent half-lives at 55° and 0°, respectively,1976Ra05). g=0.63 <i>15</i> (1981Le19), +0.59 <i>10</i> (1976Bo21), +0.49 <i>10</i> (1975Bo44).
2879.01 22	6+		
4365.6 4	(8+)	0.36 ps 14	$T_{1/2}$: the uncertainty may be larger since lifetime of the 4366 level is comparable to the stopping time in the tantalum stopper. Other: <0.7 ps (1977Eg01)
4875.6 <i>4</i>	9+	<0.7 ps [#]	the stopping time in the tantatani stopper. Other: (0.17 ps (1977)2g01).
6227.0 5	(8.10)-	$< 1.4 \text{ ps}^{\#}$	
7472.4 5	(9-,11-)	· · F.	E(level): level from 1981He20 only.

[†] From $\gamma(\theta)$ and $\gamma(\ln \text{ pol})$ data.

[‡] From RDM (1991Ja11), unless otherwise stated.
[#] From DSA (1977Eg01).
[@] From Adopted Levels.

$\gamma(^{40}K)$

A₂, A₄ and POL are from 1977Eg01, unless otherwise stated.

\mathbf{E}_{i}^{level}	\mathbf{J}_i^{π}	\mathbf{E}_{f}^{level}	$\mathbf{J}_f^{\boldsymbol{\pi}}$	${\rm E}_{\gamma}{}^{\dagger}$	$\mathrm{I}_{\gamma}{}^{\dagger}$	Mult.	δ^\dagger	Comments
Unplaced		<u>.</u>	<u>.</u>	810.3 3 916.5 6 939.9 5 1329.1 14 1526.9 4 2267.9 8 2700 4 0				
891.45	5-	30	3-	2790.4 9 861	<1			
0,110	U	0.0	4-	891.46 16	100 3	M1+E2	+0.099 8	δ: other: +0.070 <i>10</i> (1981He20). A ₂ =-0.091 9, A ₄ =0,
2542.77	7+	891.45	5-	1651.29 <i>12</i>	78.0 18	M2(+E3)	-0.01 3	POL=-0.43 3. δ: other: -0.3 2 (1981He20). A ₂ =+0.301 13, A ₄ =-0.105 15 POL = 0.52 5
		0.0	4-	2542.6 3	9.8 5	E3(+M4)	+0.10 7	δ: from 1981He20. Data of 1977Eg01 consistent with pure E3. A ₂ =+0.46 3, A ₄ =0, POL=+0.83 19.

	$\gamma^{(40}$ K) (continued)									
\mathbf{E}_{i}^{level}	\mathbf{J}_i^{π}	\mathbf{E}_{f}^{level}	J_f^{π}	$E_{\gamma}{}^{\dagger}$	I_{γ}^{\dagger}	Mult.	δ^\dagger	Comments		
2879.01	6+	2542.77	7+	336.18 <i>16</i>	10.5 3	D(+Q)	+0.01 2			
		891.45	5-	1987.8 6	5.4 7	D(+Q)	-0.05 4	POL=-0.22 <i>3</i> . A ₂ =-0.34 <i>5</i> , A ₄ =0,		
4365.6	(8+)	2879.01 2542.77	6+ 7+	1486.3 <i>5</i> 1822.9 <i>3</i>	3.5 <i>11</i> 19 <i>4</i>			POL=+0.4 3. A ₂ =+0.9 5, A ₄ =-0.5 4.		
4875.6	9+	4365.6 2542.77	(8+) 7+	509.4 <i>10</i> 2332.8 <i>4</i>	10 <i>3</i> 18.0 <i>20</i>	E2		A ₂ =+0.35 5, A ₄ =-0.19 5,		
6227.0	(8,10)-	4875.6	9+	1351.37 18	12.0 10	E1(+M2)	-0.07 5	POL=+0.51 /. δ : from 1981He20. A ₂ =-0.19 3, A ₄ =0, POL=+0.20 5		
		4365.6 2542.77	(8+) 7+	1861 3684	$<\!\!0.6 < 0.25$			POL=+0.29 5.		
7472.4	(9-,11-)	6227.0	(8,10)-	1245.42 22		D+Q	+0.13 7	E_{γ} : from 1981He20. γ not reported by 1977Eg01. A_2 =-0.08 5, A_4 =0 (1981He20).		

[†] From 1977Eg01, unless stated otherwise.

Adopted Levels, Gammas

 $Q(\beta^{-})=-14323.0\ 28;\ S(n)=15643.2\ 19;\ S(p)=8328.23\ 9;\ Q(\alpha)=-7039.65\ 21$ 2003Au03

Additional details of data for resonances in different reactions can be found in the following datasets:.

 36 Ar(α, γ):resonances: 24 resonances from E α (lab)=5486 to 13330 (excitation energy in 40 Ca=11978-19038).

 39 K(p, γ): excitation energies and γ -decays for about 160 resonances.

 39 K(p,p),(p, α):resonances: 267 resonances from E(p)(lab)=1102-6660 (excitation energy in 40 Ca=9403-14680).

 40 Ca(p,p α).(p,2p):resonances: two resonances with excitation energies (in 40 Ca) at 11700 and 12300.

Other reactions (giant resonances, properties of compound nucleus, reaction mechanism, etc.):.

¹²C(²⁸Si,X) or ²⁸Si(¹²C,X): 2002Ro35, 1995Na09, 1986Ha33, 1983Ra26, 1979Os01, 1979Cl02, 1979Ba49, 1973Ho37: reaction mechanisms.

²⁴Mg(¹⁶O,X): 1991Fo08, 1985Sa11, 1981Nu02, 1980Sa31, 1980Sa12, 1980Pa08, 1979Le02, 1979Cl02, 1973Ho37.

²⁷Al(¹⁶O,t): 1982Aw01, 1981Aw02: reaction mechanism.

³⁹K(p,p),(p,α):resonances: 1987WaZI, 1990Bu02, 1970De30: see dataset.

⁴⁰Ca(⁴⁰ Ca,X): 1997Sc40: giant quadrupole resonance.

⁴⁰Ca(p, π^{-}): 1983Sh31: E=190 MeV. Measured σ .

 ${}^{40}Ca(p,p\alpha),(p,2p)$:resonances: 2001Sc25: see dataset.

Photonuclear reactions: ⁴⁰Ca(γ ,n),(γ ,p),(γ ,2n),(γ ,pn), etc: 1974Br15, 1972Br58, 1971Sh23, 1971Is06, 1968Go29, 1966An03, 1964Ba24.

 ${}^{40}Ca(\gamma,\pi)$: 2002Kr02: deduced DELTA resonance. Others: 1988St12, 1982Do12.

⁴⁰Ca(e,X): 1976Zi02.

 ${}^{40}Ca(\mu^-, v)$: 2003Po09: photon asymmetry measured in radiative muon capture in ${}^{40}Ca$.

⁴⁰Ca(*π*+,K+): 1991Pi07.

 40 Ca(K, π^-): 1981Be17, 1989Ta16: hypernuclear production.

⁴⁰Ca(p-bar,X): 2002Ha01, 2001Tr23, 2001Tr19: measured anti-protonic x-rays.

⁴⁰Ca(p-bar,p-bar): 1984Ga32.

⁴⁰Ca(p,np): 1984Ah04 (also 1983AhZY): deduced neutron hole states.

⁴⁰Ca(pol p,pol n): 1986Wa28: deduced spin-flip probability.

 ${}^{40}Ca({}^{20}Ne, {}^{16}O\alpha)$: 1986Sh30.

Hyperfine structure, isotope shifts, nuclear radius measurements: 2000Mu17, 2000Ga58, 1995Ku41, 1993Si20, 1992Ve02, 1992Ma20, 1991As06, 1990Go10, 1984Va08, 1983Lo13, 1982Ay02, 1982An15, 1980Be13, 1979Kl01, 1978Br31, 1976Ne08. Mesic atoms: 1983Ku10, 1981Wo02, 1980Po01, 1979Ba07, 1971Ku08, 1970Ma26, 1970Ku03, 1966Co02.

Mesic atoms, in most studies, deduced isotope shifts, root-mean square radius.

1983Ku10, 1980Po01, 1979Ba07, 1970Ku03: measured pionic x rays.

1981Wo02, 1970Ma26, 1966Co02: measured muonic x rays.

1971Ku08: measured kaonic x rays.

Giant (dipole, quadrupole and octupole) resonances: see inelastic scattering datasets: ${}^{40}Ca(e,e')$; $(\pi^+,\pi^{+\prime}),(\pi^-,\pi^{-\prime});(p,p'),(pol)$ p,p'); (d,d'),(pol d,d'); (³He,³He'); (α , α'); (HI,HI'). In XREF column, level population indicated by letter Z or z refers to the following level energies in different reactions:.

⁴¹Ti εp decay (80.4 ms): 0, 3352.62, 3736.69, 3904.

⁴⁴V εα decay (111 ms): 0.

¹⁴N(²⁸Si,d): 6930, 8098.

³⁶Ar(⁷Li,t): 3900, 5265, 5615, 6290, 6525, 7010.

³⁶Ar(¹⁶O,¹²C): 3353, 3900, 5250, 6900, 9900, 12400.

⁴⁰Ca(p,pα),(p,2p):resonances: 11700, 12300.

⁴⁰Ca(t,t),(pol t,t): 0.

Inelastic scattering: 0, 3740, 3900, 4490, 5900, 6290, 6400, 6940, 7300. Giant resonances at 7.8, 10.7, 14.0, 17.6 and 26 MeV. ⁴²Ca(¹⁶O,¹⁸O): 0.

⁴⁰Ca Levels

	40 0		10		10
Α	40 K β^{-} decay (1.248×10 ⁹ y)	М	$^{40}Ca(n,n'),(pol n,n')$	Y	40 Ca($\pi^+,\pi^{+\prime}$),($\pi^-,\pi^{-\prime}$)
В	40 Sc ε decay (182.3 ms)	Ν	$^{40}Ca(n,n'\gamma)$	Z	⁴¹ Ti ε p decay (80.4 ms)
С	$^{32}S(^{12}C,\alpha)$	0	⁴⁰ Ca(p,p'),(pol p,p')	AA	44 V $\varepsilon \alpha$ decay (111 ms)
D	36 Ar(α, γ):resonances	Ρ	40 Ca(p,p' γ)	AB	¹⁴ N(²⁸ Si,d)
Е	36 Ar(⁶ Li,d)	Q	⁴⁰ Ca(d,d'),(pol d,d')	AC	36 Ar(⁷ Li,t)
F	38 Ar(³ He,n)	R	40 Ca(³ He, ³ He')	AD	36 Ar(16 O, 12 C)
G	39 K(p, γ)	S	40 Ca(α, α')	AE	40 Ca(p,p α),(p,2p):resonances
Н	39 K(p,p),(p, α):resonances	Т	40 Ca($\alpha, \alpha' \gamma$)	AF	$^{40}Ca(t,t),(\text{pol }t,t)$
I	39 K(d,n)	U	41 Ca(d,t)	AG	Inelastic scattering
J	39 K(³ He,d),(³ He,d γ)	V	41 Ca(3 He, α)	AH	$^{42}Ca(^{16}O,^{18}O)$
Κ	40 Ca(γ,γ')	W	$^{42}Ca(p,t)$		
L	$^{40}Ca(e,e')$	Х	$(HI,xn\gamma)$		

Cross Reference (XREF) Flags

Nuclear Level Sequences

- A 4p-4h, 0+ band. Q(transition)=0.74 14 from life-time data; corresponds to $\beta_2 \approx 0.27$.
- B γ sequence based on 8+.
- C 3+ band.
- D Kπ=0- band (2004To07) (?). This band proposed (2004To07) as a partner of 4p-4h band based on 3353,0+ state; the 1-, 3- and 5- members of this band are proposed at 5902, 1-; 6280, 3- or 6580, 3-; and 7399, (5-), respectively. However, 7399 level is assigned (5+) in another in-beam γ-ray study. Assignment of (7-) by 2004To07 for 9033 level is inconsistent with L(p,p')=5 for a 9029 5 group and γ's to 3- and 4- states seen in (p,γ). The 7- assignment is only possible if 9033 level in 2004To07 is different from a 9032 seen in other reactions.
 E SD band (2001Id01,2003Ch22). Q(transition)=1.30 *15* over the whole band; 1.81 +46-33 for high-spin states; 1.18
- E SD band (2001Id01,2003Ch22). Q(transition)=1.30 *15* over the whole band; 1.81 +46-33 for high-spin states; 1.18 *14* for low-spin states (2003Ch22). Q(transition)=1.80 +39-29 (2001Id01). Q(transition) from 2001Id01 corresponds to β_2 =0.59 +11-7. Configuration=8p-8h defined by $\pi 3^4 v 3^4$, where superscripts are the number of protons and neutrons occupying the N=3 (f_{7/2}) intruder orbital.

Seq.	E(level) [†]	$J^{\pi \ddagger}$	T or $\Gamma^{\#}$	XREF	Comments
	0.0	0+	STABLE	ABCDEFG IJKLMNOPQRSTUVWXY	Double β decay (ε) is possible, but only limits have been set on half-life from measurements. T _{1/2} : experimental limits from 2 ε decay (2001Be79,1999Be64): >3.0×10 ²¹ y for 0-neutrino mode; >5.9×10 ²¹ y for 2-neutrino mode. J π : L(α , α')=L(³ He,n)=L(p,t)=0. Adopted (1977En02) neutron pickup spectroscopic factor=0.85 9 (L=3).
A	3352.62 9	0+	2.16 ns 6	C EFG IJ LMNOPQRS UVWXY	J π : L(α , α')=L(³ He,n)=L(p,t)=0; E0 excitation in (e,e'). Adopted (1977En02) neutron pickup spectroscopic factor=0.01 <i>1</i> (L=3). Adopted (1977En02) proton stripping spectroscopic factor<0.7 (L=2).
	3736.69 5	3-	47 ps 6	BC E G IJ LMNOPQRSTUVWXY	$\mu = +1.65 \ 33 \ (1989 \text{Ra}17, 1979 \text{Ni}04).$ $\mu: \text{ from tilted-foil hyperfine field IPAC in}$ $(\alpha, \alpha')(1979 \text{Ni}04). \text{ Others: } +1.6 \ 3 \ (\text{recoil into} gas in (\alpha, \alpha'), 1976 \text{Ja}16); 1.56 \ 30 \ (\text{IMPAC}, \text{relative to G-factor for } 4491 \ \text{level in}$ $(\alpha, \alpha'), 1987 \text{Ma}25).$ $J\pi: \ L(\alpha, \alpha') = L(^3 \text{He,n}) = L(\text{p,t}) = 3; \text{ E3}$ excitation in (e,e'). Adopted (1977 \text{En}02) neutron pickup spectroscopic factor=0.16 \ 4 \ (L=0), 0.48 \ 13 \ (L=2). Adopted (1977 En02) proton stripping spectroscopic factor=0.01 \ 1 \ (L=1), 0.55 \ 6 \ (L=3).

 ${}^{40}_{20}\text{Ca}_{20}$ -3

⁴⁰Ca Levels (continued)

I^{π‡} T or $\Gamma^{\#}$ E(level)[†] XREF Seq. Comments A 3904.38 3 2+34 fs 2 C EFG IJKLMNOPQ ST WXY J π : L(α , α')=L(³He,n)=L(p,t)=2; E2 excitation in (e,e') and (γ, γ') . Adopted (1977En02) neutron stripping spectroscopic factor<0.2 (L=2). 4491.43 4 5-295 ps 5 BC E G IJ LMNOPQRSTUVWXY $\hat{\mu}$ =+2.6 5 (1989Ra17,1974He13). J π : L(α , α')=L(p,t)=5; E5 excitation in (e,e'). μ : iPAD method in (p,p' γ)(1974He13). Adopted (1977En02) neutron pickup spectroscopic factor=0.96 19 (L=2). Adopted (1977En02) proton stripping spectroscopic factor=0.84 9 (L=3). $J\pi$: L(p,t)=L(⁶Li,d)=0. Е 5211.56 17 0 +1.1 ps 2 C e G NOP WX j jKL NOP RS 5248.79 5 c e G WX $J\pi$: L(p,t)=L(⁶Li,d)=2; E2 excitation in (e,e'). 2+0.11 ps 3 J π : L(⁶Li,d)=4; $\gamma(\theta)$ in (HI,xn γ). А 5278.80 6 4+ 0.230 ps 35 сEG NOP S Х j 5349 5 W t 5613.52 3 4-0.67 ps 10 Bc G IJ NOP TUV X $J\pi$: $\gamma(\theta)$ in (HI,xn γ). But (pol p,p') gives 2+. Adopted (1977En02) neutron pickup spectroscopic factor=0.77 13 (L=2). Adopted (1977En02) proton stripping spectroscopic factor=0.91 10 (L=3). Ε 5629.41 6 53 fs 12 сEG KL NOP RST WX $J\pi$: L(p,t)=2; E2 excitation in (e,e'). 2+Ref: L: 5610. 5902.63 7 1-18 fs 3 C E G IJKL NOP S VW $J\pi$: L(p,t)=L(⁶Li,d)=1. 2004To07 propose this as 1- member of $K\pi=0$ - band. Adopted (1977En02) neutron pickup spectroscopic factor<0.01 (L=2). Adopted (1977En02) proton stripping spectroscopic factor=0.05 2 (L=1), <0.13 (L=3). Ref: C: 5900. 6025.47 5 2-0.15 ps 3 e G IJ NOP s UVw $J\pi$: L(d,n)=1+3; (pol p,p'). Adopted (1977En02) neutron pickup spectroscopic factor=0.14 4 (L=2). Adopted (1977En02) proton stripping spectroscopic factor=0.05 2 (L=1), 0.24 4 (L=3). $J\pi$: L(⁶Li,d)=3. С 6029.71 6 3+0.38 ps 7 e G ΝP s wΧ 6160 (3-)L ST J π : L(α , α')=(3). Ref: S: ?. Ref: T: 6100. 6285.15 4 3-0.34 ps 5 C E G IJ L NOP RST VW Y J π : L(α , α')=L(p,t)=L(⁶Li,d)=3. 2004To07 propose this as possible (3-) member of $K\pi=0$ - band. Adopted (1977En02) neutron pickup spectroscopic factor=0.05 2 (L=2). Adopted (1977En02) proton stripping spectroscopic factor=0.50 7 (L=1), <0.1 (I = 3)6422.4 10 (2+)9 fs 1 Κ 0 $\hat{J}\pi$: É2 excitation in (γ, γ') . 6507.87 13 4 +125 fs 24 сEG NOP S WX $J\pi$: L(p,t)=L(⁶Li,d)=4. Е 6542.80 9 4 +125 fs 24 сEG NOP S Х J π : L(⁶Li,d)=4. Ref: N: ?. Ref: S: ?. Bc E G IJ L NOP RSTUVW Y J π : L(α, α')=L(p,t)=L(⁶Li,d)=3. 6582.47 10 3-0.17 ps 3 2004To07 propose this as possible (3-) member of $K\pi$ =0- band. Adopted (1977En02) neutron pickup spectroscopic factor=0.04 1 (L=0), 0.24 4 (L=2).

 $^{40}_{20}$ Ca₂₀-4

				⁴⁰ Ca Levels (continued)
Seq.	E(level) [†]	$J^{\pi \ddagger}$	T or $\Gamma^{\#}$	XREF Comments
				Adopted (1977En02) proton stripping spectroscopic factor=0.18 2 (L=1), <0.2 (L=3). Ref: N: ?. Ref: T: 6560.
	6750.41 7	2-	135 fs 25	E G IJ NOP S UVW Y J π : (pol p,p'); but L(⁶ Li,d)=2 gives 2+ Adopted (1977En02) neutron pickup spectroscopic factor=0.20 4 (L=2). Adopted (1977En02) proton stripping spectroscopic factor=0.16 2 (L=1), 0.44 8 (L=3). Ref. S: 2
	6908 70 8	2+	2 35 fs 30	C E G KL NOP W $I\pi$: I (n t)-I (⁶ I i d)-I (n n')-?
Δ	6930.2.3	<u>6</u> +	$0.34 \text{ ps} \pm 9.17$	c F i NOP uV X $I\pi$: L(⁶ I i d)-6: γ (A) in (HI xny)
А	6931.29 <i>6</i>	3-	0.54 ps +9-17 1.4 ps б	c G j L NO rstuV $J\pi$: (2-,4+) from γ 's to 2+, 4- and 5-; (1:6)-
	(020.0.10	(1 (5)	0.42.6.17	from $L({}^{3}\text{He},\alpha)=2$.
	6938.0 18	(1- to 5-)	0.42 fs 1/	c P rstu $J\pi$: γ to 3
	6950.48 7	1-	0.95 fs 4	c FG IJKL NOP stuVW Jπ: L(p,t)=L(³ He,n)=1. Adopted (1977En02) neutron pickup spectroscopic factor=0.06 2 (L=2). Adopted (1977En02) proton stripping spectroscopic factor=0.40 7 (L=1), <0.5 (L=3)
	7100	(2+)		L (2 0).
	7113.1 10	1-	55 fs 28	G ij P w $J\pi: L(p,t)=0+2$ gives (3,4)
	7113.73 5	4-	76 fs 30	G ij OP S UVw $J\pi$: L(p,t)=(3); L(p,p')=5; γ -decay modes. Ref: S: 7120.
	7239.07 8	(3-,4,5-)	0.10 ps 5	G OP $J\pi$: γ 's to 3- and 5
	7277.82 8	(2,3)+	49 fs 35	c G OP $J\pi$: γ to 3
_	7300.67 11	0+	118 fs 35	c E G OP S W $J\pi: L(\alpha, \alpha')=L(p,t)=L(^{o}Li,d)=0.$
С	7397.2 10	(5+)	0.47 ps 14	OP X $J\pi$: γ to 4+. 2004To07 proposed this as (5-)
	7421.9 15	(2+ to 6+)	0.20 ps 14	OP W $J\pi$: γ to 4+.
	7446.23 6	(3,4)+	0.14 ps 5	G OP W $J\pi$: γ to 2+.
	7466.35 7	2+	7.6 fs 40	E G OP ST W $J\pi$: L(p,t)=2.
				Ref: S: ?. Bef: T: 7500
	7481			G
	7532.26 5	2-	0.16 ps 3	G IJ OP V $J\pi$: L(³ He,d)=1; L(³ He,\alpha)=2; L(p,p')=3; not
			I	3- from (p, γ) ; not 4- from γ decay modes.
	7561.17 7	4+	0.14 ps 4	E G OPQ S W $J\pi$: L(°Li,d)=4. Ref: S: ?.
	7623.11 8	(2-,3,4+)	0.11 ps 3	G OP W $J\pi$: γ 's to 2+ and 4-; but L(p,t)=0.
	7658.23 5	4-	<10 fs	B G iJ OP uVW $T=1$.
	7676 6 5	(6+)	0.21 ps 5	$J \mathcal{H}$: $\log J = 5.5 \text{ HOIII 4-}$.
	7694 08 4	3-	< 10 fs	$\begin{array}{cccc} G & I & O & U & X & J \\ G & I & OP & S & W & T-1 \end{array}$
	1094.00 1	5	<10.13	$J\pi$: L(d,n)=1; γ 's to 3- and 4
	7701.8 4	0+	0.20 ps 5	EG 0 s W $J\pi$: L(⁶ Li,d)=0.
	7769.4 10	(3,4,5-)	166 fs 35	G OP W $J\pi$: γ 's to 3- and 4
	7814.7 6	0+		F OP W $J\pi$: L(³ He,n)=0.
	7870	(3-)		E $J\pi$: L(⁶ Li,d)=3.
	7872.18 9	2+	2.0 fs 2	E G KL OP S W $J\pi$: L(p,t)=2; 2+,4+ in (γ,γ') .
				Ref: E: 7900.
	7928.42 10	4+	49 fs 35	G 1 OP rS W $J\pi$: $L(\alpha, \alpha')=4$.
г	7972.5	(≤ 3) -		c r w $J\pi$: $L(d,n)=1$.
E	1914.4 8 7076 55 2	(6+)	$21 f_{c} 21$	
	1710.33 3	∠+	$\angle 1$ 18 $\angle 1$	$U = U = U = U = W = J \pi$. $\gamma S IO U + and 4+$.

$\frac{\text{Seq.}}{8018.8 \ 10} \begin{array}{c} \frac{\text{E}(\text{level})^{\dagger}}{8018.8 \ 10} \\ 8051.8 \ 6 \\ 8091.61 \ 17 \end{array} \begin{array}{c} J^{\pi \ddagger} \\ 0 + \\ 2 + \\ 3.0 \ \text{fs } 2 \end{array} \begin{array}{c} \text{T or } \Gamma^{\#} \\ \textbf{C} \\ \textbf$	
8018.8 10 0+ c 0P W $J\pi$: L(p,t)=0. 8051.8 6 0 0 0 0 0 8091.61 17 2+ 3.0 fs 2 c EFG K 0P S J π : L(α, α')=2; E2 excit	
8091.61 17 2+ 3.0 fs 2 c EFG K OP S W $J\pi: L(\alpha, \alpha')=2$; E2 excit	
L(p,t)=4. Ref: E: 8050. Ref: E: 8050	tation in (γ, γ') ; but
B 8098.9 7 8+ 12.5 ps 17 c X $J\pi$: $\Delta J=2$, E2 γ to 6+.	
8113.2 5 1(-) 38 fs 17 c E i K OP WX Jπ: dipole excitation in Ref: E: 8150.	$(\gamma, \gamma'); L(^{6}Li, d) = 1.$
8134.77 10 (2-,3,4+) <28 fs c G i OP $J\pi$: γ 's to 2+ and 4	
8187.5.8 (3,4,5-) <17 fs G i DP w $J\pi$: γ to 3	
8175.7 0 8271 I (\leq 3)- IJ OP S J π : L(d,n)=1; γ 's to 1- a Ref. S: ?	and 2
8276 <i>l</i> $0+$ EF OP W $J\pi$: L(p,t)=L(³ He,n)=0. also suggested for a 827	But L(⁶ Li,d)=4 is 70 group.
8323.16 8 (1-,2+) 55 fs 20 c G DP $J\pi: \gamma$'s to 0+ and 3	8 1
8338.0 3 (2+ to 5-) c G O W J π : from (p, γ). 8358.9 6 (0,1,2)- 100 fs 25 c IJ OP J π : L(d,n)=1; γ to 1-; R	RUL.
8364 5 (3- to 7-) P J π : γ to 5 8373.94 15 4+ E G O S VW J π : $L(\alpha, \alpha')=L(p,t)=4$. Definition of the second seco	
8424.81 11 2- <17 fs G IJ L OP uV T=1. Iπ: M2 excitation in (e	e')
8439.0 5 0+ EfG j OP r W $J\pi$: L(p,t)=0. Ref. E: ?	,0).
8484.02 13 0+ 24 fs 14 fG j OP r u W $J\pi$: L(p,t)=0.	
8540 4 (1,2+) 14 fs 14 e P uv $J\pi$: γ to 0+.	
$J\pi$: L(p,t)=5.	
8578.80 9 2+ 4.9 fs 6 c e G K OP s w $J\pi$: E2 excitation in (γ ,	γ′).
8587 2 (2+,3) c e P s w $J\pi$: γ 's to 2+, 2- and 4+	+ .
8631 5 UP 866538 1- T DP $I\pi: I(dn)=1: \gamma \text{ to } 0+$	
Ref: P: 8670.	
8678.29 104+40 fs 35GPW $J\pi$: L(p,t)=4.8701 1(6-)X $J\pi$: γ 's to 4- and 5	
8717 8 8748.22 9 2+ 6.9 fs 14 e G i K OP T $J\pi$: E2 excitation in (γ_{1})	γ′).
Ref: P: 8/56. Ref: T: 8700	
8764.18 6 3- c G i P W $J\pi$: L(p,t)=3.	
8810 7 (2+) c e OP S J π : L(α, α')=2.	
Ref: P: 8819. 8850.6 9 (6,7,8)- I OP W $J\pi$: L(p,p')=7.	
Ref: P: 8860.	
8909.09 U W 8934.81.7 2+ FG i P $I\pi \cdot I({}^{6}Iid) - 2$	
C 8935.8.9 (7+)	
$8938.4 9 0+$ i OP U W $J\pi$: L(p,t)=0.	
Ref: P: 8949. Ref: U: 2	
8980 5 $(5,6,7)+$ 0 U w $J\pi$: L(p,p')=6.	
8982.5 5 2+ 8.3 fs 14 i K q S U w $J\pi$: E2 excitation in (γ , part S : 9070	γ').

 ${}^{40}_{20}\text{Ca}_{20}$ -6

				⁴⁰ Ca Levels (continu	ed)			
Seq.	E(level) [†]	$J^{\pi \ddagger}$	T or $\Gamma^{\#}$	XREF			Comments		
	8994.50 11	(1-,2+)		Gi	OPq	[w	Ref: U: ?. J π : γ 's to 0+ and 3		
	9031.9 <i>3</i>	4-		G	0	VW	Jπ: γ 's to 3- and 5-; L(p,p')=5. 2004To07 propose (7-) for this level, but γ 's to 3- and 4-		
D	9033 1	(7-)				Х	states are inconsistent with this assignment. E(level): it is possible that this level is the same as the 9031.9 seen in other reactions and the 4542 γ reported by 2004To07 could correspond to 4540.2 γ in (p, γ). But the most intense 3418 γ from 9031.9 level is not reported by 2004To07		
	9050.1 10				0		Teported by 20041007.		
	9080.3 11	2		a :	0	v	Τ. (0)		
	9091.70 0	3-		Gj	U	VW	I=(0). $I\pi: \sqrt{s}$ to $I_{2}=2+2$, 3_{2} and $4+$		
	9135.66 5	(3)-		e G Ij	0	Vw	T=0. J π : γ 's to 1- and 4+: L(d.n)=1: L(³ He. α)=2.		
	9162.1 <i>11</i>			e j	0	W			
	9185.3 12	(1,2,2)		j	0		T 0		
	9209.77 3	(1,2,3)-		G	U	v	I=0. $I\pi$: \sqrt{s} to 1, and 3.		
	9226.69 5	(1-,2,3-)		e G i	0	v	$J\pi$: γ 's to 1- and 3		
	9227.43 7	(1,2+)		Gi	0	v	$J\pi$: γ 's to 0+ and 2		
	9246.0 12	(6,7,8)-		E	0	W	J π : L(p,p')=7. But L(⁶ Li,d)=6 for a 9240 group.		
	9274.5 12	0.			0	W			
А	9304 5	(8+)				w X	$J\pi$: L(p,t)=0.		
	9362.54 6	3-		B E G j		S w	T=0. J π : log <i>ft</i> =5.4 from 4-; γ 's to 2+ and 4 Ref. S: 9340		
	9377.8 2			Gi	0	W	Kei. 5. 75+0.		
	9388.20 19	2+		Gj			$J\pi$: γ 's to 0+ and 4+.		
	9395.7 <i>3</i>	(3-,4+)		G Ij			Ref: I: 9408.		
	9404.85 19	2-	0.14 keV	GHIj			T=1.		
							$J\pi$: γ s to 0+ and 3 Ref: 1: 9408		
	9406.4 6	0+		FG j		W	T=1.		
				Ū.			Ref: F: 9380.		
	9412.4 2	2		G Ij	0		Ref: I: 9408.		
	9418.8 2	3-		B GIJ	0		I=1. $I\pi$: log ft=5.6 from 4.: γ 's to 1 and 4.		
							Ref: I: 9408 .		
	9429.11 5	(3,4)-		B GIj		v	T=0.		
							$J\pi$: log <i>ft</i> =5.5 from 4-; γ 's to 3-, 4- and 5		
	0422 46 18	1	0.22 keV				Ref: 1: 9431.		
	9432.40 18	1-	0.25 KeV	GHIJ		v	I = 1. $I\pi$: γ 's to $0+2+$ and $2-$		
							Ref: I: 9431.		
	9453.95 5	3-	0.09 keV	B GHIj	0	V	T=0.		
							$J\pi: \log ft = 5.2 \text{ from } 4-; L(d,n)=1; \gamma' \text{ s to } 0+$		
							and 4 Ref: O: ?.		
	9500.0 15	(2+)		E G		S	$J\pi: L(^{6}Li,d)=2.$		
	9536.35 16	(3,4)+		G					
	9537.9 5	(2_{+})	0.4 keV	GHI	0	1717	Ref: O: $?$.		
	7JU4 J	(2+)		Г		V W	I_{π} I (³ He n)-2		

${}^{40}_{20}\text{Ca}_{20}$ -7

⁴⁰Ca Levels (continued)

Seq.	E(level) [†]	$J^{\pi \ddagger}$	T or $\Gamma^{\#}$	XF	REF						Comments
											Ref: F: 9600
	9603.0.4	3_		B		счі			т	****	T-1
	7005.0 4	5-		D		GIII			1	vw	J_{π} : log <i>ft</i> =5.6 from 4-; γ 's to 3- and 4
	9604.6 4	1-	0.19 keV 5			GHi	K			vw	Ref: 1: 9600. T=1.
	9640.89 7	2-				G				vW	$J\pi$: γ 's to 0+, 2+ and 2 T=1.
											$J\pi$: γ 's to 0+, 1-, 2+ and 3
	9655.6 9	(1,2+)				G		0		VW	
	9662.3 2	(≤ 3)-				GHi		0		VW	$\Gamma: 1.8/(J(J+1))$ keV.
	9668.71 8	3-			E	Gi	J			V	T=1. $I\pi: x's to 2+2-and 5-$
	9779.47 7	3				G					T=1.
	0795 2 2	(1,2)				a					$J\pi$: γ s to 2+, 4+ and 4
	9/85.5 2	(1,2+)				G					$J\pi$: γ s to 0+ and 2+.
	9802.2 7	(1,2,3)-				GH					1: 1.8/(J(J+1)) KeV.
	9811.1 2	(3,4,5-)		В		G					$J\pi$: log $ft=6.1$ from 4
	9829.54 16	(1- to 4+)		В		G					$J\pi$: log <i>ft</i> =6.6 from 4
-	9835.08 19	(2+ to 5-)		В		G					$J\pi: \log ft = 6.6$ from 4
E	9853.5 8	(8+)								Х	
	9854.54 17	(1,2,3)-				GH					$\Gamma: 1.7/(J(J+1))$ keV.
	9859.7 <i>3</i>	(4,5,6)-				G					
	9865.15 <i>11</i>	1	0.100 keV 24		de	G	Κ				T=1.
											$J\pi$: γ 's to 0+,1- and 2+.
	9869.3 4	1+	0.90 keV 21		de	G	KL	0	S		$J\pi$: γ 's to 0+ and 2+; M1 excitation in (e,e').
											But L(⁶ Li,d)=2 for 9870 group. Ref: S: 9870
	9898.6.3					G	T.				
	9921 4 2	(345-)		в	P	G	-				$I\pi$: log ft=6 3 from 4-: (1-:5-) from (p γ)
	9939 8 2	(3,4,5)		D	2	c					(p, p)
	9954 00 0	1+		B	0	C					Т-0
	JJJ4.00 9	4 7		Ъ	e	G					I=0. $I\pi: \log ff = 7.7$ from $A: \sqrt{s}$ to 3 and 5
	0077 20 17	(2, 4, 5)		р	~	C					$J\pi$: log $f_{-7.7}$ from 4
	9977.20 17	(3,4,3)		D	e	G					$J\pi$. $\log f = 7.0$ from 4
	9993.71 J	(2,2)				G -					T_1
	10040.34 9	(2-,5-)				Gl				u	I = I
	1004575	$(2, t_{-}, 7)$				a :					$J\pi$: γ s to 1- and 4
	10045.7 5	(5- to 7-)				Gi				u	T. 1
	10049.38 /	4-		В		Gı				uv	I=1.
	10050 0 2										$J\pi$: log π =0.5 from 4-; γ s to 2-, 5- and 5
	10058.0 5	$(1, 0, \cdot)$			e	Gl		0		uv	T. O
	10065 2	(1-,2+)			e			0			
	10000 - 0					_			-		$J\pi$: L(^o L ₁ ,d)=2 for a 10080 group.
	10080.7 2				е	G			S	u	
	10130.70 19	(3-,4+)		В		G				u	T=0.
											$J\pi: \log ft = 6.7$ from 4
	10154 7	(3-,4+,5-)		В	E						
	10193 7	(3 - 4 + 5 -)		R							$J\pi$: log <i>ft</i> =7.3 from 4-; L(°L1,d)=5. T=0
	101/0 /	(3,11,3)		2							I = 0. $I \pi$: log ft=7.5 from 4-
	10199 2 4	(1-)	0.27 keV			GH					T=0
	10205 1 8	(-)				G					
	10210.6.2	(3.4)-		P		G				v	$I\pi$: log ft-5.7 from 4-
	10232 8 7	(3,7)		Ц		C C				v	
	10262 53 10	3-	0.4 keV			G					T=0+1
	10202.33 10	5	UT NU I			ų					$I\pi: \sqrt{s}$ to $0+1-2+$ and $3-$
	10267 7 5	1_				Cu					T_{-0}
	10207.7 5	$(345) \pm$				C					1-0.
	10277.0.2	(J, - , <i>-</i>) ⁺	1.1 keV			сч Сч		Ω			Т-0
	10211.7 2	(1)	1.1 NO /			011		0			1- U .

Seq.	E(level) [†]	$J^{\pi \ddagger}$	T or $\Gamma^{\#}$	XR	EF						Comments
	10285.0.3	1_			CI	ч		Ω			
	10205.0 5	1- 1_	26 eV 7		ם מ	u v	т	0			T-1
	10510.0 4	1+	20 C V /		D G	n	1	U			I = I. $I \pi$: M1 excitation in (e.e. ¹)
	10333 7 5	(3)		D	CI	u		0	c		T_{-0}
	10555.7 5	(3-)		D	G	п		U	a		1-0.
											J_{l} : $\log J_{l} = 7.1$ from 4
											Rel: U: /.
											Ref: S: 10340.
	10358.6 15				ΕG						$J\pi$: L(⁶ Li,d)=8.
											Ref: E: 10340.
	10361.5 15	3-	3.9 keV	В	G						T=0 .
											$J\pi$: log ft=7.2 from 4
	10362.6 5	1-]	H					
	10364.6 5	1-]	H					
	10376.6 5	1-			G	H					
	10383.90 16	(1-,2+)			G						T=0 .
	10415.06 6	3			G						T=1 .
	10420.2 5	1-			G	H					T=0.
	10430.58 19	NATURAL			G						T=0.
	10443.4 5	2-			G	H					Ref: γ: 10441.4.
	10443.9 2	3-	0.44 keV	В	G						T=0.
											$I\pi$: log ft=6.2 from 4-
	10446.8.5	1-			1	н					
	10470 0 15	(3.5)-		В	G	-					T=0
	10170.015	(5,5)		2	ŭ						$I\pi$: log $ft-5.7$ from 4-
	10474 2									Y	$I\pi: \gamma$ to (6.): (8.) proposed by 2004To07
	10474 2				C					Λ	<i>sn</i> . 7 to (0-), (0-) proposed by 20041007.
	10503 1 15	(3 1 5)		D	c u						$I\pi$: log $ff-5.5$ from A
	10514 8 15	$(3, 4, 5)^{-}$		D D	C C						T_{-0}
	10514.0 15	(5-,++,5-)		D	G						I = 0. Let $\log f = 6.7$ from 4
	1051625	1			1	ш					$J\pi$. log $Ji=0.7$ from 4
	10510.5 5	(1 +)			1	n ur					
	10529.0 5	(1+)			G						Τ_0
	10341.3 3	0+			G	п					I=0.
	10552 2 15										$J\pi$: 2+ III (p, γ).
	10552.2 15	(2 1 5)		Б	еG						$\mathbf{L}_{\mathbf{r}}$ has \mathcal{L} (2 from 4
	10585 5	(3,4,5)		В					a		$J\pi$: log π =0.3 from 4
	10596.2 5	3-		В	ΕI	H			S		
											$J\pi$: log <i>ft</i> =6.5 from 4
	10,500 1 5				_						Ref: E: 10590.
	10598.4 5	(1+)			. 1	Hí 					
	10607.4 5	0(+)			fl	H					
	10618.6 5	2-]	H					
	10621.4 5	0+			fl	H					T=0.
											$J\pi$: 1- is also proposed.
	10633.6 5	(1-)			G	H					
	10639.07 7	(3-,4,5-)			G						T=1.
	10646.4 4	NATURAL			fG						T=0 .
	10653.23 16	(1- to 4+)			G	H	L		s		Ref: L: 10680.
	10657.4 5	2+	0.35 keV]	H					T=0.
	10666.4 5	2-]	H					
	10670.4 3	1-	5.7 keV		G						
	10673.69.17	(2-)			G		T.				$J\pi$: M2 excitation in (e.e').
		(-)			-		_				Ref: L: 10676.
	1067545	1-	0.33 keV		CI	н					T=0
	10691 0 3	2+	0.14 keV	R	Cl	H					$I\pi$: 1+ is also possible
	10600 50 10	3	5.1 1 10 1	D	E C	-	т				$I\pi$: log ff-6 6 from $A_{\rm c}$ But I (⁶ I i d)-7 for
	10077.30 10	J		Б	ĿG		ь				$3n$. $\log (n-0.0 \text{ mom } 4^{-1})$. Dut L($(LI, u) = / 10\Gamma$
											Ref: L: 10680.
	10700.9.5	0+			1	н					
	10720.8.3	(3.5)-		B	۲						T=0
		(0,0)		2	u u						- • •

⁴⁰Ca Levels (continued)

 ${}^{40}_{20}\text{Ca}_{20}$ -9

				⁴⁰ Ca Levels (continued)			tinued)			
Seq.	E(level) [†]	$J^{\pi \ddagger}$	T or $\Gamma^{\#}$	XRI	EF				Comments	
									$I\pi$: log $ft=5.7$ from 4-	
	10722.1 5	1+			Н					
	10737.7 <i>3</i>	1-	0.5 keV		ΕG				T=0+1.	
	10740 1 5	1_			ц				Ref: E: 10/00.	
	10747.8 4	1- 4+			G				T=0	
	10748.8 5	0+			Ч				1-0.	
	10753.85 18	(3,4,5)		В	G				$J\pi: \log ft = 6.5$ from 4	
	10770.2 <i>3</i>	(1+)			GH				Ref: H: 10772.1.	
	10776.3 <i>3</i>	3-	12 keV	В	G	L	S		T=0.	
									$J\pi$: log <i>ft</i> =5.3 from 4-; 1- in (e,e') for 10776. Ref: L: ?. Ref: S: 10800.	
	10780.5 5	(3-)			Н					
	10780.9 <i>3</i>	2+	0.18 keV		GH				T=0 .	
	10502 1 5								Ref: H: 10778.2.	
	10/83.1 5	(0-)			H F C				Dafe E. 2	
	10787.7 5	(1 - 2 +)			E G G				T = 0	
	10802.6 5	$(1^{-},2^{+})$ 0(+)			Н				1-0.	
	10813.7 5	(3-,4+,5-)		В	e G				T=0 .	
									$J\pi$: log <i>ft</i> =6.3 from 4-; L(⁶ Li,d)=5.	
		_							$\Gamma: 13/(J(J+1))$ keV.	
	10816.2 5	2-			H					
	10816.4 5	3+ NATURAI			H O C				Т-0	
	10833.0 5	3(-)			e H				1-0.	
	10848.5 4	(3,5)-		В	e G				T=0 .	
									$J\pi: \log ft = 5.8$ from 4	
	10849.2 5	2-			Н					
	10852.0 5	(1-,2-)	0.045.1 37		H				T 0	
	10861.3 3	2+	0.045 KeV		H CH				I=0.	
	10869.5 5	0+			H					
	10873.7 5	1-			Н					
D	10895 <i>1</i>	(9-)						Х		
	10899.1 5	1+		_	Н					
	10910.0 4	(3,4,5)	2.3 keV	В	e G				T=0.	
	1001465	1			п				$J\pi$: log <i>ft</i> =6.8 from 4-; L(°L1,d)=3 for 10900	
	10914.0 5	1- 3_			л н					
	10913.0 5	(2+,3,4+)			e G					
	10932.5 5	1-	2.0 keV		GH				T=0 .	
	10933.2 5	2-			Н					
	10946.8 5	2+	0.23 keV		Н				T=0.	
	10950.7 5	1-	10 keV		GH				1=0.	
	10955.4 5	(3-4+5-)		B	с				Т-0	
	10)50.0 4	(3-,++,3-)		Б	ŭ				$J\pi$: log <i>ft</i> =6.0 from 4	
	10976.3 15	(3,4,5)		В	G	1			$J\pi$: log <i>ft</i> =6.0 from 4	
	10988.0 4	(3-,4+,5-)		В	G	1		W	T=0 .	
	10099 5 5	2							$J\pi: \log ft = 7.2$ from 4	
	10988.5 5	2- (1+)			H U					
	10994.7 4	(1-)	6.7 keV		G					
	10998.7 5	1-,3-	0.20 keV		Η					
	11002.4 5	(1,3)-			G	1			T=0 .	
В	11003.0 9	(10+)						Х		
	11007.0 5	1-	5.0 keV		Н					

⁴⁰Ca Levels (continued)

Seq.	E(level) [†]	$J^{\pi \ddagger}$	T or $\Gamma^{\#}$	XRI	EF			Comments
	11011.0 /	3_	0.3 keV			C 1		T=0+1
	11011.0 4	(1, 2)	0.5 KeV			G I		T=0+1 . T=0
	11024.0 5	(1-, 3-)	0.27 KeV			GII II		1-0.
	11030.1 3	(1+)				н		
	11038 /	(3,4,5)	0.501.17	В		a		$J\pi$: log $ft=6.4$ from 4
	11044.3 5	2+	0.50 keV			GH		1=0.
	110/0.6 4	(1- to 4+)				G		
	110/3.3 5	2+				H		
	11078.2 5	1-			е	GH		T=0 .
	11083.4 5	(1+)				H		
	11087 <i>3</i>	(3-,4+)		В				T=0 .
								$J\pi$: log ft=7.1 from 4
	11089.1 5	0(+)			Е	Н		Ref: E: 11100.
	11106.8 5	1-	5.2 keV			Н		
	11118.8 5	2+	0.046 keV	В		GH	S	Ref: S: 11100.
	11128.9 5	4+	0.11 keV		F	G		T=0 .
	11143 6	(3,4,5)-		В				$J\pi$: log ft=5.8 from 4
	11145.0 5	1(-)				Н		0.5
	11145.6 5	1+				Н		
	11157.0 5	2-				Н		
	11161.3.5	4+	0.040 keV			Н	U	T=0.
	11162.7 5	2+				Н	-	- • •
	11167.2.5	4+	0.083 keV			GH		T=0
	1110/12 0	• •	01000 110					Ref: v: 111653
	11187 4 5	3-	1.4 keV			ні		Ref. 7. 11105.5.
	11202 7 5	(3)-	1.1 10 /	R		ні	11	Т-0
	11202.7 5	$(3)^{-}$		Ъ		II J	u	1-0.
	11010	$(0, \cdot)$			-			J_{n} . log j_{l} = 3.5 from 4-, K (p , p).
	11210	(0+)	201 1/		E	J		$J\pi$: L(°L1,d)=0.
	11212.4 5	3-	2.8 keV	-		нј		
	1121/3	3-	25 keV	В		J	u	$J\pi$: log <i>ft</i> =5.2 from 4
	11217.6 5	4+	1.4 keV			Нј		
	11231.2 5	2-				Н	u	1: 3/(J(J+1)) keV.
	11236 3	1-	12 keV			H	u	
	11246.6 5	3-	0.092 keV			H	u	T=0.
	11255.7 5	1+				Н		
	11260.6 5	(0-)				H		
	11264.2 5	2+	0.34 keV			H		T=0 .
	11284.1 5	(2-)				Н		
	11289.6 5	1+				Н		
	11300.1 5	1 +				H		
	11302.3 5	(1-)				H		
	11311 4	(3-,4+,5-)		В	Е		u	T=0 .
								$J\pi$: log ft=6.2 from 4
	11319.8 5	(0-)				Н		
	11321.8 5	2+	0.52 keV			Н		T=0 .
	11329.1 5	2+				Н		
	11330.5 5	1-	4.0 keV		е	Н		T=0.
	11338.5 5	(1+)				Н		
	11342.4 5	2-				Н		
	11346.2 5	4(+)				Н		T=0.
	11351.3 5	1+				Н		
	11362.2.5	1+				Н		
	11365.8.5	2+	0.19 keV			Н		Т=0.
	11366.8.5	2-	5.17 101			н		
	11368 1 5	$\frac{1}{4(+)}$	0.020 keV			H		
	11370	(5-)	5.020 AU		F	**		I_{π} : I (⁶ I i d) - 5
	11370	(J-) 2+	1 / koV		പ	ч		J_{11} , $L(L_{1}, U) - J$.
	113/1.2 5	∠⊤ 2 i	1.4 NOV			n u		Т-0
	11202 9 5	2+	2.0 KeV			п u		1-0.
	11392.8 3	1(-)	0.10 KeV			п		

				⁴⁰ Ca	⁴⁰ Ca Levels (continued)						
Seq.	E(level) [†]	$J^{\pi \ddagger}$	T or $\Gamma^{\#}$	XREF	7		Comments				
	11404 0 5	1-	3.5 keV		н						
	11406.8 5	1+	5.5 10 1		Н		1-0.				
	11414.6 5	4+	0.10 keV	В	Н		T=0. J π : log <i>ft</i> =6.4 from 4				
	11420.1 5	3-	0.30 keV		Н						
	11432.5 5	1-	0.30 keV		Н		T=0 .				
	11436.6 5	2+	0.22 keV		Η		T=0.				
	11447.0 5	1-	5.3 keV	b	Η		T=0.				
	11451.2 5	1+	0.0001.11		H	~					
	11455.2 5	3-	0.060 keV	b	Н	S	1=0. Ref: S: 11470.				
	11460.2 5	2+	1.17 keV	E	E H		T=0.				
	11464.9 5	2(+)	0.13 keV		Н		T 0				
	11468 3	(3-,4+,5-)		BE	2		T=0. J π : log <i>ft</i> =6.2 from 4-; L(⁶ Li,d)=5.				
	11468.5 5	2-			Η						
	11479.6 5	1+			Η						
	11486.5 5	0+	0.11 keV		Η						
	11489.4 5	1+			H						
	11514.4 5	2+	0.62 keV		H						
	11515.0 5	1(-)	4.23 KeV		н						
	11518.8 5	2+			Н						
	11557.75	2-	0.62 keV		п u						
	11542.0 5	(1+)	0.02 Ke v		н						
	11546 5 5	2-			н						
	11549.5	(3.5)-		В			Т=0.				
	110190	(0,0)		2			$J\pi$: log <i>ft</i> =5.9 from 4				
	11554.3 5	1-	0.95 keV		Н						
	11558.9 5	(2+)			Н						
	11563.3 5	(2-)			Η						
	11577.7 5	2-			Η						
	11577.8 5	2+	0.23 keV		Η						
	11585.4 5	2-			H						
	11597.0 5	(2+)			H						
	11602.1.5	2+	0.001 1		H						
	11605.2.5	2+ 1	0.28 keV		H						
	11605.1 5	1- 1	13 keV		н						
	11613.8.5	(2_{-})	0.00 Ke v		п						
	11617 10	(3.4.5)		R	11	11	$I\pi$: log $ft=6.3$ from 4-				
	11628.3 5	(3+)		2	Н						
	11628.9 5	2+	0.085 keV		Н						
	11637.9 5	1-	0.09 keV		Н						
	11644.8 5	(2-)			Н						
	11646.7 5	2+	0.60 keV		Η						
	11650.6 5	2(+)	0.18 keV		Н						
	11652.0 5	3-			Η						
	11653.3 5	2+	1.59 keV		Н						
	11661.5 5	1-	1.56 keV	_	Н		T 0				
	11663-6	(3-,4+,5-)		В		u	J=0. J π : log <i>ft</i> =6.2 from 4				
	11672.6 5	(2-)	0.041		Η		D 4 G 44400				
	11676.9 5	2+	0.96 keV		Н	S	Ret: S: 11690.				
А	11685.8 9	(10+)				Х					
	11687.9.5	(1+)			H						
	11089.0 3	(2-)		-	, н		$\mathbf{L}_{\mathbf{r}}$ \mathbf{L} (61 : 4) 7				
	11690	(/-)	0.021 keV	Ŀ	ב דד		$J\pi: L(L1, d) = /.$				
	11092.0 J	4(+)	0.021 KeV		н						

${}^{40}_{20}\text{Ca}_{20}$ -12

	⁴⁰ Ca Levels (continued)								
Seq.	E(level) [†]	$\mathrm{J}^{\pi \ddagger}$	T or $\Gamma^{\#}$	XRE	F				Comments
	11696.1 5	0(-)			Н				
	11703.4 5	0+	4.65 keV		Н				
	11704.4 5	2-			Н				
~	11707.6 5	1-	0.30 keV		Н				
С	11708.7 12	(9+)						Х	
	11/13.4 5	$\frac{1+}{2}$			H U				
	11713.5 5	2- 1+			н				
	11723.9.5	3(-)	0.060 keV		н				
	11726 5	(3,5)-	0.000 Rev	В			u	v	T=0.
								5	$J\pi: \log ft = 5.7$ from 4
	11730.8 5	1(-)	3.6 keV		Н				
	11730.9 5	1+			Н				
	11738.6 5	2+			Н				
	11742.6 5	4+	1.07 keV		Н				
	11/44.4 5	1(-)	0.55 keV		Н				
	11749.5 5	2-	2.37 KeV		п				
	11753.8 5	3- 1+	0.35 keV		н				
	11757.1.5	2-	0.00 10 1		н				
	11767.8 5	3(-)	0.041 keV		Н				
	11775	(1+)				L			
	11782.4 5	3(-)	0.041 keV		Н				
	11788.3 <i>5</i>	2+	2.5 keV		Н				
	11792.2 5	1+		_	Н				
	11/99.0 5	4(+)	0.18 keV	В	H		u	У	$J\pi: \log ft = 6.0$ from 4
	11803.9 5	(1+)	0.20 KeV		H U				
	11808.9 5	(1+) 2+	1.8 keV		н				
	11811.4.5	3-	0.26 keV		н				
	11820.4 5	3-	3.5 keV		Н				
	11830.6 5	2+	0.30 keV		Н				
	11839.0 5	0+	1.05 keV		Н				
	11841 6	(3-,4+,5-)		В	E				T=0.
									$J\pi$: log <i>ft</i> =5.9 from 4-; L(°Li,d)=5 for 11800 Ref: E: 11800.
	11843.9 5	1+	0.001.37		H				
	11855.6 5	2+ (1+)	0.39 keV		Н				
	11857.1 5	(1+)	0.41 keV		п				
	11864 5 5	(0+)	0.41 KC V		н				
	11868.6 5	(4+)	0.032 keV		Н				
	11869.8 5	3-	0.040 keV		Н				
	11872.0 5	2+	0.87 keV		Н				
	11877.8 5	1-	0.32 keV		Н				
	11884.3 5	1+			Н				
	11888.1 5	4+	0.13 keV		H				
	11890.7 5	1-			Н				
	11895.8 5	(2-)			H U				
	11901.2 5	1+ 3-	1.0 keV		н				
	11924.4 5	2+	2.2 keV		н				
	11929.8 5	$\frac{-1}{4(+)}$	0.030 keV		H				
	11933.1 5	1-	16.1 keV		Н				
	11934.8 5	1+			Н				
	11937.1 5	2-			Н				
	11940.2 5	1+	0.40.7.77		H				
	11942.6 5	3-	0.48 keV		H				
	11944.8 J	1-	0.40 KeV		н				

				⁴⁰ Ca Levels (co	ntinued)				
Seq.	$E(level)^{\dagger}$	$\mathrm{J}^{\pi \ddagger}$	T or $\Gamma^{\#}$	XREF			Comments		
	11948.2 <i>5</i> 11958.5 <i>5</i>	0+ (2+)	0.31 keV 1.0 keV	H H	S		Ref: S: 11940.		
	11962.7 5	0+	0.30 keV	Н					
	11969.6 5	1 +		Н					
	11970.8 5	2+	0.26 keV	Н					
	11974.9 <i>5</i>	1-	0.055 keV	D H					
	11983.1 5	(2-)	1.0 keV	Н					
	11986.9 5	3-	0.38 keV	D H					
	11988 <i>1</i>	0+	81 eV 10	D F		W	T=2.		
							J π : L(³ He,n)=0; IAR state. % α =93 9 to ³⁶ Ar g.s.; % α <3% to first 2+ in ³⁶ Ar; %p<5% ro ³⁹ K g.s.		
	11993.8 <i>5</i>	0-		D H					
	12000 5	(3,5)-		В			T=0.		
	12001 1 5	$(2 \downarrow)$	1.02 keV	ч			$J\pi$: log ft=5.4 from 4		
	12001.1 5	(2+)	1.02 KC V						
	12007.2 5	1+ 2-		н					
	12012.0.5	2- 4+	0.010 keV	н					
	12012.0 5	4+ 1+	0.010 KC V	н					
	12026.7.5	4+	0.22 keV	н					
	12020.7 5	3_	0.22 keV	н					
	12038.3	(345)-	0.51 Ke v	B G	Ο		$I\pi$: log ft-5.8 from 4-		
	12030 5	(3, 4, 5) 2+	2.65 keV	e GH L	0		<i>sm</i> : log <i>jt</i> = <i>s</i> .0 from 4 .		
	12056.2.5	2+	2.05 Re (e H					
	12058.7.5	1-	1.11 keV	U II H					
	12067.1.5	2+	1.15 keV	H					
	12067.6.5	4+	1.11 keV	Н					
	12068 <i>3</i>	(3,5)-		В			T=0.		
							$J\pi: \log ft = 5.6$ from 4		
	12076.6 5	2-	3.07 keV	GH					
	12081.8 5	4(+)	0.021 keV	Н					
	12085.9 5	4(+)	0.011 keV	Н					
	12088.6 5	2-		Н					
	12089.6 5	2+	24 keV	e H					
	12092.9 5	4(+)	0.060 keV	Н					
	12094.9 5	2+	9.4 keV	De GH					
	12105.8 5	4(+)	0.090 keV	Н					
	12110.5 5	2+		e GH					
	12114.9 5	3-	0.78 keV	H					
	12125.7 5	(3+)	0.10.1.11	H					
	12132.5 5	(4+)	0.13 keV	H					
	12134.7 5	(4+)	0.10 keV	H					
	12141.1 5	2+	1.24 keV	H					
	12152.1 5	4+	0.36 keV	H					
	12157.8 5	4(+)	0.12 KeV	H					
	12159.3 5	4(+)	0.083 KeV	H					
	12177.5 5	1(-)	0.22 KeV				D-f: E: 12170		
	12180.0 5	2+	1.50 KeV	E H			Rel: E: 12170.		
	12104.5 5	2-	1.24 keV	п					
	12172.0 J 12106 1 5	2+ 1()	1.24 KeV	п					
	12190.1 3	1(-)	0.95 KeV	H D CH I			I_{π} : from (a, a')		
	12201.0 5	<u> </u>	2.1 KC V	U GR L U			J.M. 110111 (C,C).		
	12209.1 5	0- 4+	0 021 koV	л u					
	12211.7 5	++ 1⊥	0.021 KCV	n u					
	12217.5 5	1- 1-	1 46 koV	n u					
	1222635	2+	0.43 keV	н					
	12237.6.5	1+	0.10 NO Y	н					

	Ca Levels (continued)							
Seq.	$E(level)^{\dagger}$	J ^π ‡	T or $\Gamma^{\#}$	XREF				Comments
	12243.8 5	4+	0.030 keV	Н				
	12245.1 5	1 - (2)	2.0 keV	H	т			Lat from (a a')
E	12334 9 10	(2-) (10+)		DG	L		x	$J\pi$: from (e,e).
Ľ	12340	(5-)		Е				$J\pi$: L(⁶ Li,d)=5.
	12423	· · /		D G				
	12450	(4+)		E				$J\pi$: L(⁶ Li,d)=4.
	12488	(1+)			L			
	12505	(2-) (10+)			Г		Y	
	12604	(10+)		G			л	
	12622	(2)			L			
	12650	(7-)		E G				$J\pi$: L(⁶ Li,d)=7.
	12668			G				
	12688	(2)		G F				I_{π} , I (6I; d)-2
	12720	(3-)		E	T.			$J\pi$. L(LI,u)-3.
	12830	(1+,2-)			Ĺ			
	12900	(4+)		E G				$J\pi$: L(⁶ Li,d)=4.
								Ref: γ: 12875.
D	12923 2	(11-)					Х	
	12980			D G G				
	13049	(1+)		G	L			
	13050	(4+)		E				$J\pi$: L(⁶ Li,d)=4.
	13086			G				
р	13113	(12)		G			v	
В	13115.1 10	(12+) (2-)			L		X	
	13194	(2^{-})		G	Ц			
	13195 2	(10-)					Х	Jπ: γ to (9-); 2004To07 propose (10-).
	13200	(4+)		E				$J\pi$: L(⁶ Li,d)=4.
	13203			G				
	13230			D				
	13300	(4+)		E				$J\pi: L(^{6}Li.d)=4.$
	13445	(2-)		_	L		у	
	13450	(0+)				S	у	J π : L(α, α')=0.
	13470	(4+)		E			У	$J\pi$: L(⁶ Li,d)=4.
C	13480	(1+)		D	L		у	
C	13535.5 15	(11+) (6+)		F			Λ	I_{π} : I (⁶ I i d)=6
	13666	(0+)		L	L			$J\pi$. L(Li,u)=0.
	13720	(6+)		DE				$J\pi: L(^{6}Li,d)=6.$
	13830	(7-)		E G				$J\pi$: L(⁶ Li,d)=7.
	12000				_			Ref: <i>γ</i> : 13822.
	13900	(2+)		C	L	0 0		$T_{-}(0)$
	13913	(4-)		G		υų		$I_{-}(0)$. I_{π} : $\sigma(\theta)$ in (p,p') .
								Ref: Q: 13921.
	13953	(4+)		DE				$J\pi$: L(⁶ Li,d)=4.
	12002			_				Ref: E: 14000.
	13993			G				
	14097	(4+)		F				$I\pi: L(^{6}Lid)=4$
	14200	(0+)		L		R		$J\pi$: L(³ He, ³ He')=0.
А	14232.4 10	(12+)					Х	

⁴⁰Ca Levels (continued)

$^{40}_{20}$ Ca₂₀-15

				⁴⁰ Ca Levels (continued)			ntinued)		
Seq.	$E(\text{level})^{\dagger}$	$J^{\pi \ddagger}$	T or $\Gamma^{\#}$	XREF					Comments
	14283 15	(6-)					0		T=1.
	14320						0		J π : $\sigma(\theta)$ in (p,p'). $I\pi$: I (p,p')=(3)
	14320	(6+)		E	н		U		$\pi: L(p,p) = (3).$ $\pi: L(^{6}Lid) = 6$
	14370	(01)		Ц	11				Ref: E: 14380.
	14410	(3-)		D			0		$J\pi$: L(p,p')=3.
	14460						ä		Ref: D: 14420.
	14460	(2+)			Н		oqS		$J\pi$: L(p,p')=2 for 14500 group; L(d,d')=0+2 for 14500 group: L($\alpha \alpha'$)=2 for 14450 group
	14530	(6+)		DE	Н		оq		$J\pi$: L(⁶ Li,d)=6.
							-		Ref: D: 14510.
	14600	(12+2.4+)			п	т	~		Ref: E: 14500.
	14600	(1,2+,3-,4+) (2+)		۵	п	Г	P D a		$J\pi$: If $(n, n') = 2$
	14680	(21)		e	Н		a		$J\pi$: 1+ for a 15000 group in (d.d').
	14750	(4+)		Е			1		$J\pi: L(^{6}Li,d)=4.$
	14780	(2+)					0		$J\pi: L(p,p')=2.$
	14870			DE					$J\pi: L(^{6}Li,d)=(9).$
	4			_			_		Ref: E: 14850.
	15080			E			0 q		
R	15140	(13+)		Ł			q	Y	
Б	15152.4 12	(13+)		E				л	
Е	15267.1 14	(12+)		-				Х	
D	15306 2	(13-)						Х	
	15330			E					
	15600			E					
	15700 15748 1 14	(12_{+})		Ł				Y	
	15900	(3-)					S	л	$I\pi: L(\alpha, \alpha')=3$
А	16529.4 12	(14+)					2	Х	
С	16579.7 <i>16</i>	(13+)						Х	
	16700						R		$J\pi$: L(³ He, ³ He')=(3).
	17670			D				Y	E(level): possibly GQR.
	17698 6 14	(14+)						Y	Ref: Y: 1/500.
	17700	(1++) (2+)					S	л	$J\pi$: L(α, α')=2.
	17859	()		D			-		
	18054.6 14	(14+)						Х	
D	18147	(15)		D				77	
D	18215 2	(15-)			c	т	ODG	X	$I_{\pi}: I(d, d') = 0 + 2: I(^{3}H_{2} + 2H_{2}) = 2(+0)$
	18200	(2+)			G	Г	ųrs		$J\pi$: L(d,d)=0+2; L($^{\circ}$ He, $^{\circ}$ He)=2(+0). Ref I · 18400
									Ref: R: 18200.
									Ref: S: 18200.
	18327			D					
Б	18453	(14.)		D				v	
E	18497.2 17	(14+)			C			X	
	18719.2 17	(14+)			u			Х	
	18732	~ /		D					
	19038			D					
D	19070	(15.)			G				
В	19195.6 <i>1</i> 0 19450	(15+)			c		C	Х	I_{π} : I ($\alpha \alpha'$)-0
	174JU	(0+)			u		G		Ref: S: 19180.
	19850				G				
	20130				G				

				⁴⁰ Ca Leve	els (co	ontinu	ed)		
Seq.	$E(level)^{\dagger}$	$J^{\pi \ddagger}$	T or $\Gamma^{\#}$	XREF					Comments
	20430			G					
А	20578.6 15	(16+)						Х	
	20650			G					
	20940			G			S		J π : L(α, α')=0+2.
									Ref: S: 21000.
	21490			G					
	21690			G					
	22060			G					
Е	22060.4 20	(16+)						Х	
	23360	(1-)			Κ		S		J π : L(α, α')=1; GDR.
	$31 \times 10^3 2$					0			
	$35.3 \times 10^3 5$				L				
	42.0×10^{3}				L				

[†] Based on γ -ray energies in ⁴⁰Sc ε decay; (p, γ); (γ , γ') and (HI,xn γ). In other cases, a large number of excitation energies are from resonances in (p,p) and (p, α). When levels are known from particle-transfer reactions, weighted averages of available values are taken. The following reactions have imprecise excitation energies above \approx 8 MeV, hence level correspondence between various reactions (as given in XREF column) is considered (by the evaluators) as tentative: resonances in (α , γ); (⁶Li,d); (³He,n); (d,d'), (³He,³He'); (α , α'); (HI,HI') and (d,t).

[‡] When no arguments are given, the assignments are based on $J\pi's$ determined in ${}^{39}K(p,\gamma)$ or in ${}^{39}K(p,p),(p,\alpha)$:resonances. For high-spin structures (J>6), assignments are based on $\gamma(\theta)$ data and expected band associations. In particle-transfer reactions, target (${}^{39}K$) $J\pi=3/2+$ for (d,n) and (${}^{3}Hed$) reactions; target (${}^{41}Ca$) $J\pi=7/2-$ for (${}^{3}He,\alpha$) and (d,t) reactions. In arguments based on γ decays RUL (for E2 and M2 transitions) is also used when level lifetimes are known. For some of the high-energy levels populated only in (e,e'), $J\pi$ assignments are from measurements of $\sigma(\theta)$ and deduced transition strengths in that reaction.

[#] Lifetimes are mainly available from DSAM in $(p,p'\gamma)$ (for 51 levels). For selected levels, values are also available from (γ,γ') (for 17 levels); ³⁹K (p,γ) (for 6 levels); and (HI,xn γ) (for 3 levels).

	γ ⁽⁴⁰ Ca)										
\mathbf{E}_{i}^{level}	J_i^π	\mathbf{E}_{f}^{level}	${ m J}_f^{m \pi}$	${\rm E}_{\gamma}^{\dagger}$	I_{γ}^{\ddagger}	Mult. [§]	δ^{\S}	Comments			
3352.62	0+	0.0	0+	3352.6		EO		Decay is mainly by e^+e^- pair emission. $\rho^2(E0)=0.026 \ I$ (1999Wo07).			
3736.69	3-	0.0	0+	3736.3 <i>3</i>	100	E3		B(E3)(W.u.)=27 4.			
3904.38	2+	3352.62	0 +	551.8	0.081 7	[E2]		B(E2)(W.u.)=32 4.			
		0.0	0+	3904.0 <i>1</i>	100	E2		B(E2)(W.u.)=2.26 14.			
4491.43	5-	3736.69	3-	754.7 2	100	(E2(+M3))	+0.05 3	B(E2)(W.u.)=0.962 17.			
5211.56	0+	3904.38	2+	1307.7 <i>3</i>	100	[E2]		B(E2)(W.u.)=17 3.			
5248.79	2+	3904.38	2+	1344.4 <i>3</i>	18.9 <i>11</i>	M1+E2	+13 +6-3	B(E2)(W.u.)=22 6.			
								$B(M1)(W.u.)=7.\times10^{-5}$ 7.			
		3352.62	0 +	1896.1	6.4 8	(E2)		B(E2)(W.u.)=1.3 4.			
		0.0	0+	5248.7 5	100.0 15	E2		B(E2)(W.u.)=0.13 4.			
5278.80	4+	4491.43	5-	787.4	1.0 8	[E1]		$B(E1)(W.u.)=5.\times 10^{-5}$ 5.			
		3904.38	2+	1374.1 <i>3</i>	100.0 15	(E2)		B(E2)(W.u.)=61 10.			
5613.52	4-	4491.43	5-	1122.8 2	42.6 25	M1+E2	-0.7 2	B(E2)(W.u.)=5.7 24.			
								B(M1)(W.u.)=0.0047 12.			
		3736.69	3-	1876.7 <i>4</i>	100.0 25	M1+E2	-0.27 5	B(E2)(W.u.)=0.21 8.			
								B(M1)(W.u.)=0.0033 5.			
5629.41	2+	3352.62	0+	2277.5 10	14.0 10	[E2]		B(E2)(W.u.)=2.6 7.			
		0.0	0+	5628.8 2	100.0 10	(E2)		B(E2)(W.u.)=0.20 5.			
5902.63	1-	0.0	0+	5902.5 2	100	(E1)		B(E1)(W.u.)=0.00016 3.			
6025.47	2-	3904.38	2+	2121.0 6	21 3	[E1]		B(E1)(W.u.)= 7.0×10^{-5} 18.			
		3736.69	3-	2289.0 <i>3</i>	100 3	(M1+E2)					
6029.71	3+	5278.80	4+	751	3.5 12			γ from (p,p' γ) only.			
		5248.79	2+	780.9	25 4	(E2(+M1))	>2	B(E2)(W.u.)=71.			

χ^{40} Ca) (continued)										
\mathbf{E}_{i}^{level}	J_i^π	\mathbf{E}_{f}^{level}	${ m J}_f^{\pi}$	${\rm E}_{\gamma}^{\dagger}$	I_{γ}^{\ddagger}	Mult. [§]	δ^{\S}	Comments		
		3904.38 3736.69	2+ 3-	2124.4 <i>3</i> 2293.0	100 <i>4</i> <8			B(M1)(W.u.)=0.0057.		
6285.15	3-	5613.52 4491.43 3904.38 3736.69	4- 5- 2+ 3-	671.6 1793.2 2 2380.0 5 2548.4	1.4 3 100.0 11 27.4 7 4.4 6	(E2(+M3)) (E1)	-0.03 17	B(E2)(W.u.)=7.9 <i>12</i> . B(E1)(W.u.)= 2.5×10^{-5} 4.		
6422.4 6507.87	(2+) 4+	0.0 0.0 5278.80	0+ 0+ 4+	6284.6 6421.2 9 1229.0	5.8 7 100 4 <i>3</i>	[E3] [E2]		B(E3)(W.u.)=4.1 8. B(E2)(W.u.)=0.71 8.		
6542.80	4+	5248.79 3904.38 5629.41	2+ 2+ 2+	1259.0 2603.2 <i>3</i> 913.3	18 4 100 4 32 3	[E2] E2(+M3) E2	-0.09 9	B(E2)(W.u.)=26 8. B(E2)(W.u.)=3.8 8. B(E2)(W.u.)= 1.7×10^2 4. B(E2)(W.u.)= 1.7×10^2 4.		
								B(E2)(W.u.)>100 consistent with 6543, 4+ state as a member of SD band.		
6582 47	3-	5278.80 5248.79 3904.38 5613.52	4+ 2+ 2+ 4-	1264.0 1294 2638.1 <i>3</i> 969.0	14 4 24 4 100 4 25 5	(E2) E2(+M3)	-0.07 7	B(E2)(W.u.)=22 6. B(E2)(W.u.)=2.6 6.		
0302.17	5	4491.43 3904.38 3736.69	5- 2+ 3-	2091.0 2678.1 2845.1 <i>3</i>	5 3 24.3 <i>17</i> 100.0 <i>20</i>	[E2] [E1] M1+E2	+3.1 19	B(E2)(W.u.)= $0.33 \ 21$. B(E1)(W.u.)= $2.8 \times 10^{-5} \ 6$. B(E2)(W.u.)= $1.3 \ 3$. B(M1)(W.u.)= $0.0003 \ 3$.		
6750.41	2-	3904.38	2+	2848.4 10	<10			I_{γ} : 22 <i>11</i> in (n,n' γ), 18 in (³ He,d γ).		
6908.70 6930.2	2+ 6+	3736.69 0.0 5278.80	3- 0+ 4+	3014.0 3 6908.2 <i>1</i> 1652.4 <i>4</i>	100 100 100	[E2] E2		B(E2)(W.u.)=1.88 24. B(E2)(W.u.)=17 +9 - 17.		
6931.29	3-	5629.41 5613.52 5248.79	2+ 4- 2+	1301.8 1317.7 1682.4	7.0 <i>4</i> 2.4 <i>4</i> 7.4 <i>4</i>	[E1] [E1]		B(E1)(W.u.)= 1.1×10^{-5} 5. B(E1)(W.u.)= 5.3×10^{-6} 23.		
(028.0	(1 + 5)	4491.43 3904.38 3736.69	5- 2+ 3-	2439.8 3026.8 3194.5	1.7 <i>4</i> 2.4 <i>6</i> 100.0 <i>9</i>	[E2] [E1]		B(E2)(W.u.)=0.008 4. B(E1)(W.u.)=3.0×10 ⁻⁷ 15.		
6938.0 6950.48 7113.1	(1- to 5-) 1- 1-	3736.69 0.0 5629.41	3- 0+ 2+	3201 6949.9 7 1484	100 100 5	[E1] [E1]		B(E1)(W.u.)=0.00181 8. B(E1)(W.u.)=0.00010 . E_{γ} : (p.p' γ) only.		
		5211.56	0+	1900	22	[E1]		B(E1)(W.u.)=0.00022 . E _{γ} : (p,p' γ) only.		
		3904.38 0.0	2+ 0+	3208.5 7113.3	28 100	[E1] [E1]		B(E1)(W.u.)= 6×10^{-5} . From (p, γ). B(E1)(W.u.)= 1.9×10^{-5} 10.		
7113.73	4-	6025.47	2-	1088.2	1.7 5	[E2]		E_{γ} : from (p, γ). B(E2)(W.u.)=7 4.		
		5613.52 5278.80 4491.43	4- 4+ 5-	1834.9 2623.2 <i>3</i>	9.5 6 2.6 5 39.8 8	[E1]		B(E1)(W.u.)= 2.1×10^{-5} 10.		
7239.07	(3-,4,5-)	3736.69 5613.52 4491.43	3- 4- 5-	3378.5 <i>3</i> 1626 2748	100.0 <i>10</i> 50 100			E _{γ} : poor fit. Level-energy difference=3377.0. E _{γ} : (p,p' γ) only. E _{α} : (p,p' γ) only.		
7277.82 7300.67	(2,3)+ 0+	3736.69 3736.69 5629.41 5248.79	3- 3- 2+ 2+	3502.2 3541.0 1671.3 2051.9	100 100 4.8 <i>16</i> 100.0 <i>16</i>	[E1] [E2] [E2]		B(E1)(W.u.)=0.00027 <i>19</i> . B(E2)(W.u.)=2.1 <i>10</i> . B(E2)(W.u.)=15 <i>5</i> .		

γ ⁽⁴⁰ Ca) (continued)											
\mathbf{E}_{i}^{level}	J_i^π	\mathbf{E}_{f}^{level}	J_f^{π}	${\rm E}_{\gamma}^{\dagger}$	Iγ [‡]	Mult. [§]	δ^{\S}	Comments			
7397.2	(5+)	6029.71 5278.80	3+ 4+	1369 2120	100	(E2) (D)					
7421.9	(2+ to 6+)	3736.69	3-	3685	100	(D)					
7446.23	(34)+	5629.41	2+	1816.8	30.0.16						
7440.23	(3,4)	5613 52	4-	1831 5 10	48 5 19	IF11		$B(F1)(W_{11}) = 0.00014.5$			
		5278 80	4+	2167.4	56.3			D(21)((()=0.00011-5.			
		5248 79	2+	2197.4	100 3						
7466 35	2+	5248.79	2+	2217.5	24 4						
/ 100.00	21	3904 38	2+	3561.8	36.3						
		3352.62	0+	4113.5	21.2	[E2]		$B(E2)(W_{11})=0.9.5$			
		0.0	0+	7465.6	100 4	[E2]		B(E2)(W.u.)=0.22 12.			
7481		0.0	0+	7480		[]		_()()			
7532.26	2-	6285.15	3-	1247.1	23.1 21						
		6025.47	2-	1506.8	11.3 9						
		5902.63	1-	1629.6	8.0 24						
		5613.52	4-	1917.6 <i>10</i>	57 <i>3</i>	[E2]		B(E2)(W.u.)=4.1 8.			
		3904.38	2+	3627.7	36.3	ĨE1Î		$B(E1)(W.u.)=1.16\times10^{-5}$ 24.			
		3736.69	3-	3795.4	100 4	[]		_()()			
7561.17	4+	6029.71	3+	1531.4	49 5						
		5248.79	2+	2312.3	100 6	[E2]		B(E2)(W.u.)=4.6 14.			
		3736.69	3-	3824.3	15.3	ĨE1Î		$B(E1)(W.u.)=6.8\times10^{-6}$ 24.			
7623.11	(23.4 +)	5629.41	2+	1993.6	100.3	[]		_()()			
	(_ ,= ,= , : .)	5613.52	4-	2009.5	90 <i>3</i>						
		5248.79	2+	2374.2	31.5 20						
		3736.69	3-	3886.2	57.4 20						
7658.23	4-	6285.15	3-	1373.1	33 5						
1000.20		5613.52	4-	2045.8 7	100 8						
		4491.43	5-	3167.9 7	56 8						
		3736.69	3-	3920.0 10	67 8						
7676.6	(6+)	5278.80	4+	2397	100	(E2)		B(E2)(W.u.)=4.2 10.			
7694.08	3-	5613.52	4-	2080.6	10.1 13						
		3736.69	3-	3957.5 5	100.0 13						
7701.8	0+	3904.38	2+	3797.2	100	[E2]		B(E2)(W.u.)=0.44 11.			
7769.4	(3,4,5-)	5613.52	4-	2155.8	52 9						
		3736.69	3-	4032.5	100 9						
7814.7	0+	5248.79	2+	2566	43						
		3904.38	2+	3910	100						
7872.18	2+	0.0	0+	7871.9 <i>1</i>	100	[E2]		B(E2)(W.u.)=1.15 <i>12</i> .			
7928.42	4+	5613.52	4-	2314.8	100 18	[E1]		B(E1)(W.u.)=0.0005 4.			
		4491.43	5-	3436.8	100 18	[E1]		B(E1)(W.u.)=0.00014 11.			
		3/36.69	3-	4190	<14			I_{γ} : from (p, γ); 22 in			
7074 4		(540.00	4.	1422		$\langle \mathbf{O} \rangle$		$(\mathbf{p},\mathbf{p}'\boldsymbol{\gamma}).$			
/9/4.4	(6+)	6542.80	4+	1432		(Q)					
7076 55	2.	5278.80	4+	2095	20	(\mathbf{Q})		$P(E2)(W_{re}) = 2.2,22$			
1910.33	2+	32/8.80	4+	2098	20	[E2]		B(E2)(W.U.)=2.5 25.			
		3904.38	2+	4072	100 60	[E2]		$B(E2)(W_{H})=0.5.5$			
		3332.02	0+	4024	20	[E2]		B(E2)(W,u) = 0.5 J. B(E2)(W,u) = 0.010 I0			
8018.8	0+	5248 70	0+2+	2770	100	[122]		B(E2)(W.u.)=0.010 10.			
8091.61	2+	0.0	0+	8091 5 2	100	[F2]		$B(F2)(W_{11}) = 0.67.5$			
8098.9	8+	6930.2	6+	1168 7 3	100	E^2		$B(E2)(W_{II}) = 0.07.5$. B(E2)(W _{II}) = 2.6.4			
8112.2	1(_)	0.0	0+	8111 0 K	100	EE11		$B(E1)(W_{11}) = 2.0 \times 10^{-5}$ 12			
8134 77	(2, 3.4)	5620 /1	2^+	2505 2	82.0	[11]		$D(E1)(W.U.)=2.9\times10^{-1}$ 13.			
0104.//	(2-,3,4+)	5613 57	2 . 4-	2505.5	02 9 73 0						
		4491 43		3643 1	<15			Let from $(\mathbf{p} \ \mathbf{v}) \cdot 100$ in			
			5	5075.1	<1J			(p, p'y)			
		3904 38	2+	4230.1	100 30			(ኮ,ኮ ነ).			
8187.5	(3,4,5-)	3736.69	3-	4450.7	100						
	S										

γ ⁽⁴⁰ Ca) (continued)											
\mathbf{E}_{i}^{level}	\mathbf{J}_i^{π}	\mathbf{E}_{f}^{level}	${f J}_f^{m \pi}$	${\rm E}_{\gamma}^{\dagger}$	Iγ [‡]	Mult. [§]	δ^{\S}	Comments			
8271	(< 3)-	6950.48	1-	1321	100						
	()	5902.63	1-	2368	67						
8276	0+	5629.41	2+	2647	100						
8323.16	(1-,2+)	6750.41	2-	1572.7	12.5 10						
		6285.15	3-	2038.0	2.2 5						
		6025.47	2-	2297.6	26.4 17						
		5902.63	1-	2420.5	1.9 <i>11</i>						
		5248.79	2+	3074.2	4.6 8						
		3736.69	3-	4586.2	100 3						
		0.0	0+	8322.2	3.4 12			Unobserved intensity=18			
					100 10			3.			
8338.0	(2+ to 5-)	6542.80	4+	1795.2	100 10						
		6507.87	4+	1830.1	42 10			Unobserved intensity=25			
8358.9	(0,1,2)-			1405	100			15.			
8364	(3- to 7-)	4491.43	5-	3872	100						
8373.94	4+	3904.38	2+	4469.3	100						
8424.81	2-	6025.47	2-	2399.3	19 4						
		5902.63	1-	2522.1	24 4						
		3736.69	3-	4687.8	100 6						
8439.0	0+	5629.41	2+	2809.5	100						
8484.02	0+	5902.63	1-	2581.3	58 11	[E1]		B(E1)(W.u.)=0.0005 4.			
		3736.69	3-	4747.0	100 11	[E3]		$B(E3)(W.u.)=6.\times 10^3 4.$			
								B(E3)(W.u.) exceeds			
								RUL=100 by a factor of at			
								least 20.			
8540	(1,2+)	3352.62	0+	5187	67						
		0.0	0+	8540	100						
8551.1	5-	4491.43	5-	4060.8 15	100						
8578.80	2+	0.0	0+	8578.7 2	100	[E2]		B(E2)(W.u.)=0.31 4.			
8587	(2+,3)	6025.47	2-	2562	25						
		5278.80	4+	3308	25						
		3904.38	2+	4683	17						
		3736.69	3-	4850	100						
8665.3	1-	0.0	0+	8665	100						
8678.29	4+	6285.15	3-	2393.1	20.8	[E1]		B(E1)(W.u.)=0.00018 18.			
		3736.69	3-	4941.3	100 23	[E1]		B(E1)(W.u.)=0.00010 10.			
								Unobserved intensity=34			
8701	(6-)	5613 52	4-	3088				25.			
0701	(0-)	1/01/13		4209							
8748 22	$2\pm$	0.0	0+	874942	100	[F2]		$B(F2)(W_{11}) = 0.20 A$			
8764 18	3-	6029 71	3+	2734.4	47 18	[L2]		D(L2)(W.u.)=0.20 4.			
0704.10	5-	5629.41	2+	3134.6	56 20						
		5278.80	2+ 4+	3485.2	100 30						
		3904 38	2+	4859 5	65 18			Unobserved intensity ≈ 26			
8934 81	2+	7532.26	2-	1402 5	12 2 11			Choose ved intensity ~ 20 .			
0/04.01	21	7332.20	$(2 3) \pm$	1657.0	355						
		7113 73	4-	1821.0	174						
		6950.48	1_	1984 3	568						
		6750.40	2-	2184.3	568						
		6582.47	3-	2352.2	1.9.3						
		6029 71	3+	2905.0	3.2.10						
		6025 47	2-	2909.2	17.5 19						
		5902.63	- 1-	3032.1	1.7.5						
		5629.41	2+	3305.2	2.9.5						
		5248 79	2+	3685.8	5.6 24						
		5211.56	$\frac{-}{0+}$	3722.9	3.5 8						
		3904.38	2+	5030.1	100.5						
		3736.69	3-	5197.8	2.9 13						

	γ ⁽⁴⁰ Ca) (continued)							
\mathbf{E}_{i}^{level}	\mathbf{J}_i^{π}	\mathbf{E}_{f}^{level}	${ m J}_f^{\pi}$	${\rm E}_{\gamma}^{\dagger}$	I_{γ}^{\ddagger}	Mult. [§]	$\delta^{\$}$	Comments
		3352.62	0+	5581.8	21.8 21			
		0.0	0+	8933.7	77 5			
8935.8	(7+)	7397.2	(5+)	1538		(Q)		
		6930.2	6+	2004	100	(D)		
8982.5	2+	0.0	0+	8982.5 5	100	[E2]		B(E2)(W.u.)=0.143 25.
8994.50	(1-,2+)	/113./3	4-	1880.7	$0.44 \ 24$ 0.62 \ 15			
		6750.41	2+ 2-	2085.7	0.02 15			
		6582.47	3-	2411.9	0.44 13			
		6285.15	3-	2709.3	0.64 16			
		6025.47	2-	2968.9	1.5 <i>3</i>			
		5629.41	2+	3364.9	9.7 7			
		5211.56	0+	3782.6	8.2 7			
		3904.38	2+	5089.8	8.3 8			
		3/36.69	3-	5257.4	2.4 4			
		3352.62	0+ 0+	5041.5 8003 /	2.1 3 100 0 21			
9031.9	4-	7694.08	0∓ 3-	1337.7	25.8			
200112	7	6285.15	3-	2746.6	25 8			
		5613.52	4-	3418.2	100 13			
		5278.80	4+	3752.9	30 13			
		4491.43	5-	4540.2	70 13			
9033	(7-)	4491.43	5-	4542				E_{γ} : this γ may correspond
								to 4540.2γ from 9031.9
9091 70	3-	7694 08	3-	1397 5	373			level.
2021.70	5	7623.11	(2-,3,4+)	1468.6	1.31 15			
		7466.35	2+	1625.3	0.71 5			
		7277.82	(2,3)+	1813.8	2.17 24			
		7239.07	(3-,4,5-)	1852.6	1.26 17			
		7113.73	4-	1977.9	0.95 15			
		6750.41	2-	2341.2	0.98 24			
		6382.47	3-	2509.1	1.79 24			
		6029.71	3- 3+	2000.4	0.0 J 4 3 7			
		6025.47	2-	3066.1	5.0.9			
		5902.63	1-	3188.9	2.6 3			
		5278.80	4+	3812.7	14.6 7			
		5248.79	2+	3842.7	7.7 3			
		3904.38	2+	5187.0	16.2 7			
		3736.69	3-	5354.6	100.0 17			
9135.66	(3)-	8424.81	2-	710.8	1.72 15			
		7604.08	2+	1263.5	0.55 9			
		7694.08	3- 2_	1441.3	633			
		7277 82	(2,3)+	1857.8	0.3 5			
		7113.73	4-	2021.9	3.13 20			
		6950.48	1-	2185.1	0.78 14			
		6750.41	2-	2385.2	1.06 15			
		6582.47	3-	2553.0	3.5 <i>3</i>			
		6285.15	3-	2850.4	23.5 7			
		6025.47	2-	3110.1	0.43 17			
		5612.63	1- 4	3232.9	5.15			
		52/18 70	4- 2⊥	3322.0 3886 7	0.311/			
		3904 38	2+ 2+	5230.9	1367			
		3736.69	3-	5398.6	100.0 15			
9209.77	(1,2,3)-	8484.02	0+	725.7	1.53 16			
		8424.81	2-	785.0	5.4 <i>3</i>			

	γ ⁽⁴⁰ Ca) (continued)							
\mathbf{E}_{i}^{level}	\mathbf{J}_i^{π}	\mathbf{E}_{f}^{level}	$\mathbf{J}_f^{\boldsymbol{\pi}}$	${\rm E}_{\gamma}^{\dagger}$	I_{γ}^{\ddagger}	Mult. [§]	δ^{\S}	Comments
		7694.08	3-	1515.6	7.3 3			
		7113.73	4-	2096.0	2.6 2			
		6950.48	1-	2259.2	4.5 <i>3</i>			
		6750.41	2-	2459.3	3.2 3			
		6582.47	3-	2627.1	3.6 <i>3</i>			
		6285.15	3-	2924.5	6.5 <i>3</i>			
		6025.47	2-	3184.2	2.6 3			
		5902.63	1-	3307.0	17.4 5			
		5629.41	2+	3580.2	3.4 3			
		3904.38	2+	5305.0	4./ 5			
0226 60	(1, 2, 2)	3/30.09	3- 2	54/2.7	100.0 10			
9220.09	(1-,2,5-)	7352.20	∠- 1	1094.4	100 5			
		6750.41	1-	2270.1	13.9 14			
		6285.15	2-	2470.2	24.015			
		5902.63	1-	3323.9	<22			
		5248 79	2+	3977 7	<12			
		3904.38	2+	5321.9	<2.3			
		3736.69	3-	5489.6	39 3			
		0.0	0+	9225.6	<89			
9227.43	(1,2+)	6025.47	2-	3201.8	35.0 13			
		5902.63	1-	3324.7	< 0.8			
		5248.79	2+	3978.4	<4.2			
		3904.38	2+	5322.7	< 0.8			
		3352.62	0+	5874.4	100 <i>3</i>			
		0.0	0+	9226.3	<30			
9305.2	(8+)	7676.6	(6+)	1628		(Q)		
00 60 54	2	6930.2	6+	2375	105	(Q)		
9362.54	3-	8424.81	2-	937.7	4.3 7			
		7694.08	3-	1668.4	100.0 24			
		7638.23	(2, 2, 4, 1)	1720.4	20.0 20			
		6950.48	(2-,3,4+)	2/12 0	3.3 2.8			
		6750.43	1- 2_	2612.0	2.0			
		6582.47	3-	2779.9	637			
		6285.15	3-	3077.3	9.5.24			
		5613.52	4-	3748.8	29.8.22			
		5248.79	2+	4113.5	10.7 20			
		3904.38	2+	5457.8	14.4 20			
		3736.69	3-	5625.4	8.3 15			
9388.20	2+	7694.08	3-	1694.0	7.3			
		7300.67	0+	2087.4	2.5			
		6542.80	4+	2845.3	28			
		6507.87	4+	2880.3	9.0			
		6285.15	3-	3102.9	3.3			
		6025.47	2-	3362.6	6.3			
		5629.41	2+	3758.6	19			
		5278.80	4+	4109.2	15			
		5248.79	2+	4139.2	/.8			
		5211.50 2004.29	0+	41/0.3	28 8 5			
		3704.38 3726 60	∠+ 3_	3403.4 5651 1	0.J 17			
		0.0	0+	9387 N	100			
9404 85	2-	7532.26	0 + 2-	1872 5	43			
2101.02	2	7277.82	(2.3)+	2127.0	2.2			
		7113.73	4-	2291.1	20			
		6950.48	1-	2454.3	4.1			
		6908.70	2+	2496.1	7.8			
		6582.47	3-	2822.2	10			

	γ ⁽⁴⁰ Ca) (continued)							
\mathbf{E}_{i}^{level}	\mathbf{J}_i^{π}	\mathbf{E}_{f}^{level}	${ m J}_f^{m \pi}$	$E_{\gamma}{}^{\dagger}$	I_{γ}^{\ddagger}	Mult. [§]	δ^{\S}	Comments
		6285.15	3-	3119.6	100		_	
		5902.63	1-	3502.1	20			
		3904.38	2+	5500.1	7.3			
		3736.69	3-	5667.7	49			
		0.0	0+	9403.7	7.0			
9418.8	3-	7694.08	3-	1724.6	10			
		7658.23	4-	1760.5	6.7			
		7623.11	(2-,3,4+)	1/95.6	4.0			
		7552.20	2- 4	1880.5	4.8			
		6750.41	4-	2505.0	62			
		6285.15	3-	3133.5	100			
		6025.47	2-	3393.2	5 5			
		5902.63	1-	3516.0	12			
		5613.52	4-	3805.1	4.8			
		5248.79	2+	4169.8	4.3			
		3736.69	3-	5681.7	18			
9429.11	(3,4)-	7694.08	3-	1734.9	21 3			
		7658.23	4-	1770.8	100 6			
		7623.11	(2-,3,4+)	1806.0	3.3 11			
		7113.73	4-	2315.3	3.6 8			
		6582.47	3-	2846.5	26 4			
		6285.15	3-	3143.8	9.4 17			
		4491.43	5-	4937.3	81.6			
0422.46	1	3/36.69	3-	5692.0	33 0			
9432.46	1-	/532.20	2-	1900.2	2.5			
		6750.40	1- 2_	2401.9	0.8			
		6025.47	2-	3406.8	23			
		3904 38	2- 2+	5527.7	1.1			
		0.0	0^{+}	9431.3	100			
9453.95	3-	8424.81	2-	1029.1	4.9 6			
		7694.08	3-	1759.8	73.2 23			
		7658.23	4-	1795.7	23.4 20			
		7623.11	(2-,3,4+)	1830.8	5.9 <i>3</i>			
		7532.26	2-	1921.6	3.3 7			
		7446.23	(3,4)+	2007.7	2.3 7			
		7113.73	4-	2340.2	34.7 17			
		6750.41	2-	2703.4	6.9 7			
		6285.15	3-	3168.7	100.0 23			
		6025.47	2-	3428.3	5.9 10			
		5613 52	2+ 4	3840.2	8.5 10 33 7 20			
		5278.80	4- 4+	4174 9	57			
		3904 38	4+ 2+	5549.2	16.2.20			
		3736.69	3-	5716.8	11.2.13			
9603.0	3-	7113.73	4-	2489.2	61			
		6285.15	3-	3317.7	100			
		3736.69	3-	5865.8	24			
9604.6	1-	7532.26	2-	2072.3	5.8			
		6950.48	1-	2654.0	1.3			
		6750.41	2-	2854.1	2.0			
		6025.47	2-	3579.0	4.8			
		3904.38	2+	5699.8	1.0			
		3352.62	0+	6251.4	1.4			
0640.00	2	0.0	0+	9603.4	100			
9640.89	2-	7466.35	2+	2174.5	16.7 6			
		6950.48	1-	2090.3	0.52 0			
		6908.70	2+	2752.1	1.05 10			

	γ ⁽⁴⁰ Ca) (continued)							
\mathbf{E}_{i}^{level}	\mathbf{J}_i^{π}	\mathbf{E}_{f}^{level}	$\mathbf{J}_f^{m{\pi}}$	${\rm E}_{\gamma}^{\dagger}$	I_{γ}^{\ddagger}	Mult. [§]	δ^{\S}	Comments
		6285.15	3-	3355.6	0.99 23			
		5629.41	2+	4011.2	9.94 21			
		3904.38	2+	5736.1	100.0 11			
		3736.69	3-	5903.7	82.4 11			
		0.0	0+	9639.6	3.1			
9668.71	3-	7694.08	3-	1974.5	1.5 3			
		7532.26	2-	2136.4	4.1 3			
		7446.23	(3,4)+	2222.4	1.53 25			
		/113./3	4-	2554.9	60.6 10			
		6750.41	2+	2739.9	1.5 5			
		6285.15	2-	3383.4	4.0 4			
		6025.15	2-	3643 1	687			
		4491 43	5-	5176.9	682			
		3904.38	2+	5763.9	8.1.5			
		3736.69	3-	5931.6	29.7 14			
9779.47	3	8748.22	2+	1031.3	17.1 15			
		8678.29	4+	1101.2	16.6 20			
		8578.80	2+	1200.7	25.1 15			
		8134.77	(2-,3,4+)	1644.7	13.6 10			
		7928.42	4+	1851.0	26.6 15			
		7872.18	2+	1907.3	28.6 25			
		7561.17	4+	2218.2	95 4			
		/466.35	2+	2313.1	14			
		6582.47	2+	28/0.7	21.1 23 7 5 20			
		6542.80	3- 1+	3190.8	7.5 20 6 5 15			
		6507.87	4+ 4+	3271.5	3 5 10			
		6029.71	3+	3749.6	5.2			
		5629.41	2+	4149.8	10.0 10			
		5613.52	4-	4165.7	100 4			
		5278.80	4+	4500.4	27.1 20			
		5248.79	2+	4530.4	3.5 10			
		3904.38	2+	5874.7	73 5			
		3736.69	3-	6042.3	27 3			
9785.3	(1,2+)	7300.67	0+	2484.5	2.6			
		6908.70	2+	28/6.5	0.8			
		3904.38	2+	5880.5	2.9			
		3352.02	0+	0432.1	11			
9853 5	(8+)	0.0 797 <i>4 4</i>	(6+)	1880	100	(0)		
7055.5	(01)	7676.6	(6+)	2176		(\mathbf{Q})		
		6930.2	6+	2921		$(\widetilde{\mathbf{O}})$		
9865.15	1	8439.0	0+	1426.1	0.25 7			
		8091.61	2+	1773.5	1.02 11			
		7872.18	2+	1992.9	0.29 4			
		7701.8	0+	2163.3	0.74 25			
		7466.35	2+	2398.7	0.57 8			
		7300.67	0+	2564.3	4.5 3			
		7277.82	(2,3)+	2587.2	0.28 10			
		6950.48	1-	2914.6	0.45 6			
		6750 41	∠+ 2	2930.3	1.34 14			
		5902 62	∠- 1_	3114.0	0.29 3			
		5629 41	2+	4235 5	0.770			
		5248.79	2+	4616.1	0.35 4			
		5211.56	0+	4653.2	0.5			
		3904.38	2+	5960.3	7.1 3			
		3352.62	0+	6512.0	21.0 7			

γ ⁽⁴⁰ Ca) (continued)									
\mathbf{E}_{i}^{level}	\mathbf{J}_i^{π}	\mathbf{E}_{f}^{level}	J_f^{π}	$E_{\gamma}{}^{\dagger}$	I_{γ}^{\ddagger}	Mult. [§]	δ^{\S}	Comments	
		0.0	0+	9863.8 20	100.0 17				
9869.3	1 +	7701.8	0+	2167.4	1.1				
		7300.67	0+	2568.5	3.0				
		6908.70	2+	2960.5	1.2				
		5248.79	2+	4620.2	1.1				
		5211.56	0+	4657.3	0.8				
		3904.38	2+	5964.4	/.4				
		5552.02	0+	0310.1	17				
9954.00	4+	8373 94	4+	1580.0	655				
<i>)))</i>]4.00	- T 1	6931 29	3-	3022.6	525				
		6582.47	3-	3371.3	2.1 5				
		6542.80	4+	3411.1	18.2 10				
		6507.87	4+	3446.0	7.2 3				
		5613.52	4-	4340.2	8.2 7				
		5278.80	4+	4674.9	100 3				
		4491.43	5-	5462.2	4.6 7				
		3736.69	3-	6216.8	11.1 10				
10040.54	(2-,3-)	8764.18	3-	1276.3	10.4 14				
		8484.02	0+	1556.5	3.5 6				
		8323.16	(1-,2+)	1/17.3	100 2				
		7522.26	(2-,3,4+)	2417.4	4.4 0				
		7352.20	$(2 3)_{\perp}$	2308.2	1.8 5				
		7113 73	$(2,3)_{\pm}$	2702.0	856				
		6950.48	1-	3089.9	12.8.12				
		6582.47	3-	3457.8	2.7 4				
		6025.47	2-	4014.9	3.9 4				
		5902.63	1-	4137.7	26.3 12				
		3736.69	3-	6303.3	3.9 4				
10049.38	4-	9031.9	4-	1017.5	26.3 11				
		8187.5	(3,4,5-)	1861.6	1.17 11				
		7769.4	(3,4,5-)	2279.9	5.4 3				
		7239.07	(3-,4,5-)	2810.2	1.7 3				
		/113./3	4-	2935.5	32.0 9				
		6285.15	3- 3	3400.7	10.77				
		6025 47	3- 2-	4023 7	2.88 21				
		5613 52	2- 4-	4435.6	2.17.21				
		4491.43	5-	5557.5	37.3 9				
		3736.69	3-	6312.2	100.0 21				
10262.53	3-	7623.11	(2-,3,4+)	2639.3	3.9 6				
		7466.35	2+	2796.1	43.3 25				
		7446.23	(3,4)+	2816.2	13.1 11				
		7113.73	4-	3148.7	3.9 8				
		6582.47	3-	3679.8	11.4 8				
		6029.71	3+	4232.6	45 4				
		5902.63	1-	4359.7	/.5 11				
		5248 70	2+	4032.8	0.1 <i>11</i> 10.0 <i>11</i>				
		3904 38	2+ 2+	6357.6	10.0 11				
		3736.69	3-	6525.3	32.3				
10318.8	1+	7701.8	0+	2616.9	0.86 8				
		6950.48	1-	3368.2	0.50 8				
		5629.41	2+	4689.1	0.33 8				
		5211.56	0+	5106.8	0.93 7				
		3904.38	2+	6413.9	4.1 2				
		3352.62	0+	6965.5	14.4 5	_			
		0.0	0+	10317.4	100.0 8	D			

γ ⁽⁴⁰ Ca) (continued)									
\mathbf{E}_{i}^{level}	J^{π}_i	\mathbf{E}_{f}^{level}	${f J}_f^{m \pi}$	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	Mult. [§]	$\delta^{\$}$	Comments	
10415.06	3	7694.08	3-	2720.8	2.3.11				
	-	7623.11	(23.4+)	2791.8	96.3				
		7561.17	4+	2853.8	6.5 6				
		7466.35	2+	2948.6	33.9 12				
		7446.23	(3,4)+	2968.7	100.0 23				
		7277.82	(2,3)+	3137.1	5.1 8				
		7113.73	4-	3301.2	9.02 11				
		6931.29	3-	3483.6	23.0 12				
		6908.70	2+	3506.2	90.2 23				
		6750.41	2-	3664.5	14.3 6				
		6582.47	3-	3832.3	7.7 8				
		6507.87	4+	3907.0	5.9 9				
		6285.15	3-	4129.7	2.1 5				
		6025.47	2-	4389.3	33.9 17				
		5629.41	2+	4785.3	4.7 <i>3</i>				
		5613.52	4-	4801.2	39.6 17				
		5278.80	4+	5135.9	15.5 11				
		5248.79	2+	5165.9	9.7 10				
		3904.38	2+	6510.1	20.1 17				
		3736.69	3-	6677.8	40.8 23				
10474		8701	(6-)	1773					
10639.07	(3-,4,5-)	8134.77	(2-,3,4+)	2504.2	3.1 5				
		7113.73	4-	3525.2	9.5 7				
		6931.29	3-	3707.6	100 3				
		6582.47	3-	4056.3	3.8 5				
		6542.80	4+	4096.1	6.9 2				
		6507.87	4+	4131.0	9.5 5				
		5613.52	4-	5025.2	32.3 14				
		5278.80	4+	5359.9	10.5 10				
		4491.43	5-	6147.1	8.6 7				
10,000 50	2	3/36.69	3-	6901.7	53.4 24				
10699.50	3	83/3.94	4+	2325.5	2.0 3				
		8091.01	2+	2007.8	1.40 18				
		7552.20	2-	3107.1	2.0 3				
		7400.33	2+	3233.0	1.8 4				
		6008 70	(3,4)+	3233.1	1.0 3				
		6542.80	2+	3790.0	3.14				
		6285.15	4+ 3	4130.3	3.94				
		6029.71	3- 3+	4669 5	746				
		5629.41	2^{+}	5069.7	1076				
		5613 52	<u>4</u> -	5085.6	394				
		5278.80	4+	5420.3	17.9.10				
		3904.38	2+	6794.5	100.3				
		3736.69	3-	6962.2	16.3				
10737.7	1-	7694.08	3-	3043.4	17 3				
		6908.70	2+	3828.8	7.8 25				
		6285.15	3-	4452.3	14.2 24				
		0.0	0+	10736.2	100 5				
10747.8	4+	5629.41	2+	5118.0	14.8 11				
		3904.38	2+	6842.8	100.0 12				
		3736.69	3-	7010.5	3.8 7				
10770.2	(1+)	7113.73	4-	3656.3	7.9 17				
		6908.70	2+	3861.3	14.3 17				
		5248.79	2+	5521.0	100 5				
		0.0	0+	10768.6	76 <i>5</i>				
10895	(9-)	9033	(7-)	1862		(Q)			
10910.0	(3,4,5)	3736.69	3-	7172.6	100				
10921.1	(2+,3,4+)	6025.47	2-	4895.3	20				

	γ^{40} Ca) (continued)							
\mathbf{E}_{i}^{level}	J_i^{π}	\mathbf{E}_{f}^{level}	$\mathbf{J}_{f}^{\boldsymbol{\pi}}$	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	Mult. [§]	δ^{\S}	Comments
		5278.80	4+	5641.9	100			
10956.0	(3-,4+,5-)	8187.5	(3,4,5-)	2768.2	11			
		7481		3474.8	23			
		5902.63	1-	5053.0	23			
		5613.52	4-	5342.1	18			
		5278.80	4+	56/6.8	100			
10000 0	(2.4.5)	3736.69	3-	7218.6	57			
10988.0	(3-,4+,5-)	8980	(5,6,7)+	2010	12			
		6908.70	2+	4079.1	12			
		0283.13 5620.41	3-	4702.0	25			
		3029.41	2^+_{2+}	7083.0	100			
		3736.69	2+ 3-	7005.0	88			
10994 7	(1-)	5278.80	$\frac{3}{4+}$	5715 5	00			
10774.7	(1^{-})	5248 79	2+	5745 3				
		3736.69	3-	7257.3				
11003.0	(10+)	9305.2	(8+)	1698		(\mathbf{O})		
		8098.9	8+	2902		(\widetilde{O})		
11011.0	3-	8338.0	(2+ to 5-)	2672.9	27 7			
		7676.6	(6+)	3334.3	16 4			
		4491.43	5-	6519.0	100 7			
		3736.69	3-	7273.6	29			
		0.0	0+	11009.4	14			
11044.3	2+	3904.38	2+	7139.2				
		3736.69	3-	7306.9				
11070.6	(1- to 4+)	5613.52	4-	5456.1	7.7			
		5278.80	4+	5790.7	15			
		5248.79	2+	5820.7	15			
		3904.38	2+ 2	/104.9	100			
11078.2	1_	0.0	3- 0+	11078	15			
11685.8	(10+)	9305.2	(8+)	2381		(0)		
1100010	(101)	8098.9	8+	3585		(\mathbf{Q})		
11708.7	(9+)	8935.8	(7+)	2773		(\widetilde{O})		
11988	0+	10318.8	1+	1666.5 4 ^a	75 9			
		9869.3	1+	2119.5 4	100 9			
12334.9	(10+)	9853.5	(8+)	2481		(Q)		
		9305.2	(8+)	3030		(Q)		
12591.9	(10+)	9305.2	(8+)	3287		(Q)		
		8098.9	8+	4491		(Q)		
12923	(11-)	10895	(9-)	2028				
13115.1	(12+)	11685.8	(10+)	1429		(Q)		
12104		2252.62	(10+)	2112		(\mathbf{Q})		
13174		0.0	0+ 0+	13192				
13195	(10-)	10895	(9-)	2300				
13203	(10)	0.0	0+	13201				
13289		3352.62	0+	9935				
		0.0	0+	13287				
13535.5	(11+)	11708.7	(9+)	1827		(Q)		
13913	(4-)	3352.62	0+	10559				
		0.0	0+	13910				
13993		3352.62	0+	10639				
14022.4	(10.)	0.0	0+	13990				
14232.4	(12+)	11002.0	(10+)	2547		(Q)		
15152 4	$(12 \downarrow)$	12525 5	(10+)	3229		(Q)		
13132.4	(15+)	13333.3	(11+) (12+)	2037				
15267 1	(12+)	12334.0	(12+) (10+)	2037		(\mathbf{D})		
15207.1	(121)	12357.7	(101)					

γ ⁽⁴⁰ Ca) (continued)									
\mathbf{J}_i^{π}	\mathbf{E}_{f}^{level}	J_f^π	$E_{\gamma}{}^{\dagger}$	I_{γ}^{\ddagger}	Mult. [§]	$\delta^{\$}$	Comments		
(13-)	12923	(11-)	2383						
(12+)	12591.9	(10+)	3156		(Q)				
(14+)	14232.4	(12+)	2297		(Q)				
	13115.1	(12+)	3414		(Q)				
(13+)	13535.5	(11+)	3044		(Q)				
(14+)	14232.4	(12+)	3466		(Q)				
(14+)	14232.4	(12+)	3822		(Q)				
(15-)	15306	(13-)	2909						
(14+)	15267.1	(12+)	3230		(Q)				
(14+)	15267.1	(12+)	3452		(Q)				
(15+)	15152.4	(13+)	4043		(Q)				
(16+)	16529.4	(14+)	4049		(Q)				
(16+)	18497.2	(14+)	3563		(Q)				
	$\begin{array}{c} \mathbf{J}_{i}^{\pi} \\ \hline (13-) \\ (12+) \\ (14+) \\ (14+) \\ (14+) \\ (14+) \\ (15-) \\ (14+) \\ (15+) \\ (16+) \\ (16+) \\ (16+) \\ \end{array}$	$\begin{array}{c c} \mathbf{J}_{i}^{\pi} & \mathbf{E}_{f}^{level} \\ \hline (13-) & 12923 \\ (12+) & 12591.9 \\ (14+) & 14232.4 \\ & 13115.1 \\ (13+) & 13535.5 \\ (14+) & 14232.4 \\ (14+) & 14232.4 \\ (15-) & 15306 \\ (14+) & 15267.1 \\ (14+) & 15267.1 \\ (15+) & 15152.4 \\ (16+) & 16529.4 \\ (16+) & 18497.2 \\ \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \underbrace{ \begin{array}{cccc} & \underline{\gamma}^{40} \text{Ca) (continued)} \\ \hline \underline{J}_i^{\pi} & \underline{E}_f^{level} & \underline{J}_f^{\pi} & \underline{E}_{\gamma}^{\dagger} & \underline{I}_{\gamma}^{\ddagger} & \underline{Mult.^{\$}} \\ \hline (13-) & 12923 & (11-) & 2383 & & & \\ (12+) & 12591.9 & (10+) & 3156 & & (Q) \\ (14+) & 14232.4 & (12+) & 2297 & & (Q) \\ & 13115.1 & (12+) & 3414 & & (Q) \\ (13+) & 13535.5 & (11+) & 3044 & & (Q) \\ (14+) & 14232.4 & (12+) & 3466 & & (Q) \\ (14+) & 14232.4 & (12+) & 3822 & & (Q) \\ (14+) & 14232.4 & (12+) & 3822 & & (Q) \\ (15-) & 15306 & (13-) & 2909 & & \\ (14+) & 15267.1 & (12+) & 3230 & & (Q) \\ (14+) & 15267.1 & (12+) & 3452 & & (Q) \\ (15+) & 15152.4 & (13+) & 4043 & & (Q) \\ (16+) & 16529.4 & (14+) & 4049 & & (Q) \\ (16+) & 18497.2 & (14+) & 3563 & & (Q) \\ \hline \end{array} $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \underbrace{ \begin{array}{cccc} \underline{\gamma^{40}\text{Ca}} \text{ (continued)} \\ \hline \underline{J}_{i}^{\pi} & \underline{E}_{f}^{level} & \underline{J}_{f}^{\pi} & \underline{E}_{\gamma}^{\dagger} & \underline{I}_{\gamma}^{\ddagger} & \underline{Mult.}^{\$} & \underline{\delta}^{\$} & \underline{Comments} \\ \hline (13-) & 12923 & (11-) & 2383 \\ \hline (12+) & 12591.9 & (10+) & 3156 & (Q) \\ \hline (14+) & 14232.4 & (12+) & 2297 & (Q) \\ & 13115.1 & (12+) & 3414 & (Q) \\ \hline (13+) & 13535.5 & (11+) & 3044 & (Q) \\ \hline (14+) & 14232.4 & (12+) & 3466 & (Q) \\ \hline (14+) & 14232.4 & (12+) & 3822 & (Q) \\ \hline (15-) & 15306 & (13-) & 2909 & \\ \hline (14+) & 15267.1 & (12+) & 3230 & (Q) \\ \hline (14+) & 15267.1 & (12+) & 3452 & (Q) \\ \hline (15+) & 15152.4 & (13+) & 4043 & (Q) \\ \hline (16+) & 16529.4 & (14+) & 4049 & (Q) \\ \hline (16+) & 18497.2 & (14+) & 3563 & (Q) \\ \hline \end{array} $	

40

[†] Values with uncertainties are averaged values from different γ -ray studies. A large number of values is from ³⁹K(p, γ), which are from level-energy differences since measured $E\gamma$'s were not available. In ³⁹K(p, γ), many γ rays are shown with upper limits on intensities, these are not given here. See ³⁹K(p, γ) for details. [‡] Averaged values from different γ -ray studies, but most values are available only from ³⁹K(p, γ). [§] From $\gamma(\theta)$ in (HI,xn γ) and (p,p' γ). ^{*a*} Poor fit. Level-energy difference=1669.2.

40 K β^- decay (1.248×10⁹ y) 1999BeZQ,1999BeZS

Parent: 40 K: E=0; J π =4-; T $_{1/2}$ =1.248×10⁹ y 3; Q=1311.07 11; % β -=89.14 13

J: From unique 3rd forbidden β^- spectral shape for decay to 0+ level and L transfer in charge-particle reactions.

- T: From 2004Ko09 and 2002Gr01; the same value from measurements of specific activity of natural potassium salts using liquid-scintillation counting (LSC) technique. (2002Gr01 reported a value of 1.248×10⁹ y 2, later adjusted to 1.248×10⁹ y 3 by 2004Ko09 to correct the quoted uncertainty on measured isotopic abundance of ⁴⁰K). Both papers used natural abundance of ⁴⁰K as 0.01167% 2 (1975Ga24). The natural abundance of ⁴⁰K=0.0117% *I* (as recommended in the International dance of ⁴⁰K. Union of Pure and Applied Chemistry 70, 217 (1998), based on the measured value of 1975Ga24) would give about 4 times larger uncertainty on $T_{1/2}$. The earlier values of 1.265×10^9 y 13 (1999BeZS,1999BeZQ) based on recomputation of 1.277×10^9 y 8 (evaluation by 1973EnVA); and 1.26×10^9 y 1 (evaluation by 1990Ho28 from 14 different measurements out of a total of 34 measurements listed) are in good agreement. Variation of $T_{1/2}$ due to environmental conditions has been studied by 2001No10, where no significant effect has been reported. Earlier (pre-1977) measurements of partial ($\beta^$ and ce) and/or total T_{1/2} of ⁴⁰K: 1977Ce04, 1972Go21, 1966Fe09, 1965Le15, 1965Br25, 1962Fl05, 1961Gl07, 1960Sa31, 1960Eg01, 1959Ke26, 1957We43, 1956Mc20, 1955Ba25, 1955Ko21, 1955Su38, 1953Bu58, 1950Sa52, 1947Gl07. Another 16 references (from 1931 to 1971) are listed by 1990Ho28 and in the 1978 Table of Isotopes (1978LeZA); but are not present in the NSR database.
- Measurements: 2004Ko09, 2002Gr01, 2001No10, 1977Ce04, 1972Go21, 1967Mc10, 1966Fe09, 1965Le15, 1965Br25, 1962Fl05, 1962En01, 1961Gl07, 1960Sa31, 1960Eg01, 1959Ke26, 1957We43, 1956Mc20, 1955Ba25, 1955Ko21, 1955Su38, 1953Bu58, 1952Fe16, 1951Go29, 1951De34, 1950Sa52, 1949Ov01, 1948Ev09, 1947Gl07. This list is not complete, see 1978LeZA for several other references that are not present in NSR database.
- The decay scheme, which includes the β^- decay to the ground state of ⁴⁰Ca and two levels in ⁴⁰Ar, is complete since these are the only levels in the daughter nuclides below the respective decay energies.

		⁴⁰ Ca Levels
E(level)	J^{π}	T _{1/2}
0	0+	STABLE

radiations

$E\beta^-$	E(level)	$I\beta^-$	Log ft	Comments
(1311.07)	0	89.14 <i>13</i>	20.75	av E β =560.18 5. log $f^{2u}t$ from private communication from R. B. Firestone; see

⁴⁰Sc ε decay (182.3 ms) 1982Ho09,1973De08

Parent: ⁴⁰Sc: E=0; $J\pi$ =4-; $T_{1/2}$ =182.3 ms 8; Q=14323.0 28; % ε =100 1982Ho09: measured β^+ delayed protons, β^+ delayed α 's, T_{1/2}. 1973De08: measured $\Xi\gamma$, I γ .

 40 Sc decays to 36 Ar by $\varepsilon\alpha$ (0.017% 5) and to 39 K by ε p (0.44% 7) (1982Ho09).

Others:.

Others:. γ : 1971BlZH, 1968Ka08, 1966An01, 1965Ri06, 1955Gl22. β^+ : 1968Ar03, 1966An01. $\beta^+\gamma$ coin: 1971BlZH. $\varepsilon_{\rm P}$: 1974Se11 (also 1973SeYM), 1969Ve04. $T_{1/2}(^{40}Sc)$: 1974Se11, 1973De08, 1972Mo08, 1969Ve04, 1968Ar03, 1966An01, 1962Sc08, 1955Gl22, 1954Ty33.

			⁴⁰ Ca Levels
E(level) [†]	$J^{\pi \#}$	E(p)(lab)	Comments
0	0+		
3735.8 8	3-		
4490.6 10	5-		
5613.1 10	4-		
6580 4	3-		
7658.3 10	4-		
9360 <i>3</i>	3-	1006 <i>3</i>	$E\alpha$ =2089 6. $\Gamma_{\alpha}/\Gamma_{p}$ =0.0119 5. E(level): weighted average of 9360 3 (from E(p)) and 9362 6 (from E α).
9416 8	3-	1060 8	$\Delta(\mathbf{r},\mathbf{r},\mathbf{r}), (\mathbf{r},\mathbf{r},\mathbf{r},\mathbf{r},\mathbf{r},\mathbf{r},\mathbf{r},\mathbf{r},$
9427 6	(3.4)-	1071 6	
9452 3	3-	1095 3	
9601.3	3-	1241.3	
9811 4	(345-)	1445 4	
9829.8	(1 - to 4+)	1463.8	E(level): probable doublet.
9920 3	(3 4 5 -)	1552.3	
9952.8	4+	1002 0	$E\alpha = 2620.8 \Gamma_{\alpha}/\Gamma_{\alpha} > 0.5$
9979 5	(345)	1609 5	$\mu = 2020$ of $\mu = 0.0$.
10050 4	4-	1678 4	
10127 4	(3-,4+)	1752 4	E(level): weighted average of 10126 4 (from E(p)) and 10129 8 (from E α). E α =2780 8 $\Gamma_{\alpha}/\Gamma_{p}=0.14$ 5
10154 8	(3 - 4 + 5 -)		$E\alpha = 2802.8$ $\Gamma_{\alpha}/\Gamma_{\mu} > 2$
10193 8	(3, 4+5-)		$E\alpha = 2837.8$ $\Gamma_{\alpha}/\Gamma_{p} > 1$
10211 4	(3 4)-	1835 4	$\underline{a} = \underline{a} = \underline{a} = \underline{a} = \underline{a} = \underline{a}$
10332.4	3-	1953 4	
10366.8	3-	1986 8	
10447 4	3-	2065 4	
10470 <i>4</i> [‡]	(3,5)-	2089 4	E(level): weighted average of 10471 4 (from E(p)) and 10465 7 (from E α).
10504 4	(3 4 5)	2121 1	$L\alpha = 5002 7.1 \alpha/1 p \ge 1.$
10510 7	$(3, 4, 5)^{-1}$	2121 7	$F\alpha = 3132.7$ $\Gamma_{\rm ev}/\Gamma_{\rm ev} > 2$
10582 5	$(3^{-}, ++, 5^{-})$	2107 5	$\Delta \alpha = 5152 7.1 \alpha / 1 p \ge 2.$
10582 5	3-	2211 10	E(level): weighted average of 10596 <i>10</i> (from E(p)) and 10599 7 (from E α).
10693 5	3	2305 5	$L\alpha = 52057.1 \ \alpha/1 \ p = 2.07.$
10725 5	(3.5)-	2303 3	$F\alpha = 3316.5$ $\Gamma_{ee}/\Gamma_{ee} > 30$
10754 8	$(3,3)^{-}$	2365 8	$L\alpha = 5510.5.1 \ \alpha/1 \ p \ge 50.$
10776 5	(3,4,5)	2386 5	
10770 J	(2, 4, 5)	2380 5	E(1,,1),, $E(1,0,1,1,0)$, $E(1,0,1,1,0)$, $E(1,0,1,0)$, $E(1,0$
10817 /*	(3-,4+,5-)	2423 9	E(level): weighted average of 10814 9 (from E(p)) and 10819 / (from E α). E α =3401 7. $\Gamma_{\alpha}/\Gamma_{p} \ge 0.5$.
10849 5	(3,5)-	2457 5	
10909 5	(3,4,5)	2516 5	
10956 8	(3-,4+,5-)	2562 8	
10973 7	(3,4,5)	2578 7	
10987 <i>12</i>	(3-,4+,5-)		E α =3552 12. Γ _{α} /Γ _{p} ≥0.2.
11037 7	(3,4,5)	2641 7	
11088 12	(3-,4+)		$E\alpha=3643$ 12. $\Gamma_{\alpha}/\Gamma_{p}\geq 0.5.$

⁴⁰Ca Levels (continued)

$E(\text{level})^{\dagger}$	$J^{\pi \#}$	E(p)(lab)	Comments
11114 6		2716 6	E(level): probably a doublet.
11142 6	(3,4,5)-	2743 6	
11205 5	(3,5)-		$E\alpha = 3748 5. \Gamma_{\alpha}/\Gamma_{p} \ge 6.$
11217 5	3-	2816 5	•
11312 <i>5</i> ‡	(3-,4+,5-)	2912 5	E(level): weighted average of 11315 5 (from E(p)) and 11306 7 (from E α). E α =3839 7. $\Gamma_{\alpha}/\Gamma_{p} \ge 1$.
11418 7	4+	3012 7	··· I
11452 9		3045 9	E(level): probable doublet of natural-parity levels.
11472 7	(3-,4+,5-)		$E\alpha = 3988$ 7. $\Gamma_{\alpha}/\Gamma_{p} \ge 1$.
11549 6	(3,5)-		$E\alpha = 4058 \ 6. \ \Gamma_{\alpha}/\Gamma_{p} \ge 6.$
11616 10	(3,4,5)	3205 10	•
11663 7	(3-,4+,5-)		$E\alpha = 4160$ 7. $\Gamma_{\alpha}/\Gamma_{p} \geq 2$.
11724 <i>4</i> ‡	(3,5)-	3308 10	E(level): weighted average of 11723 4 (from E(p)) and 11727 7 (from E α). E α =4218 7. $\Gamma_{\alpha}/\Gamma_{p} \ge 0.2$.
11791 <i>10</i>	(3,4,5)	3376 10	·· I
11841 6	(3-,4+,5-)		E α =4320 6. $\Gamma_{\alpha}/\Gamma_{p} \ge 0.7$.
12001 7	(3,5)-	3584 10	$E\alpha = 4462 \ 7. \ \Gamma_{\alpha}/\Gamma_{p} = 5 \ 2.$
12034 10	(3,4,5)-	3613 10	
12066 9	(3,5)-	3649 10	E α =4519 9. Γ $_{\alpha}$ /Γ $_{p}$ =1.3 7.

[†] S(p)(⁴⁰Ca)+E(p)(c.m.) for delayed proton decays; α -binding energy(⁴⁰Ca)+E α (c.m.) for delayed α decays. S(p)(⁴⁰Ca)=8328.23 *9*, α -binding energy(⁴⁰Ca)=7039.65 *21* (2003Au03). All states above and including 9360 decay by protons to ³⁹K and/or α 's to ³⁶Ar g.s. [‡] Assumed here as the same level populated in ε p and $\varepsilon \alpha$ decays, although 1982Ho09 treated these as separate levels populated in the two decays. [#] From Adopted Levels.

γ (⁴⁰ Ca)							
E_{γ}^{\ddagger}	\mathbf{E}_{i}^{level}	\mathbf{J}_i^{π}	\mathbf{E}_{f}^{level}	\mathbf{J}_f^{π}	$I_{\gamma}^{\dagger \ddagger}$	Mult. [§]	$\delta^{\$}$
755.6 8	4490.6	5-	3735.8	3-	41 4		
1126 <i>3</i>	5613.1	4-			12 2	M1+E2	-0.7 2
1877.8 7	5613.1	4-	3735.8	3-	25.0 15	M1+E2	-0.27 5
2045.8 7	7658.3	4-	5613.1	4-	25.5 15		
2844 <i>3</i>	6580	3-	3735.8	3-	2.1 10	M1+E2	+3.1 19
3167.9 7	7658.3	4-	4490.6	5-	12 2		
3735.6 8	3735.8	3-	0	0+	100	E3	
3920.0 10	7658.3	4-	3735.8	3-	13 2		

 † For absolute intensity per 100 decays, multiply by 0.9954 10.

[‡] From 1973De08. [§] From adopted gammas.

				ε, β^+ radiator	ns
Eε	E(level)	Iε	Log ft	$I(\varepsilon + \beta^+)$	Comments
(2257)	12066	2.2×10 ⁻⁵ 12	5.6 3	0.00028 15	av $E\beta$ =523 5. εK =0.0708 17. CL=0.00702 17. εM +=0.00118 3.
(2289)	12034	1.8×10 ⁻⁵ 7	5.8 2	0.00024 10	av $E\beta$ =537 5. εK =0.0657 17. CL=0.00652 17. εM +=0.00110 3.
(2322)	12001	4.1×10^{-5} 15	5.4 2	0.00060 22	av $E\beta = 552 4$. $\varepsilon K = 0.0610 12$.

			<u>e,p</u>		
Eε	E(level)	Iε	Log ft	$I(\epsilon + \beta^+)$	Comments
					CL=0.00604 12. \varepsilon M+=0.001016 19.
(2482)	11841	1.4×10^{-5} 5	5.9 2	0.00028 10	av $E\beta = 624$ 4. $\varepsilon K = 0.0433$ 7. CL = 0.00429 7. cM = 0.000721 11
(2532)	11791	1.1×10 ⁻⁵ 9	6.0 4	0.00026 20	av $E\beta$ =647 5. εK =0.0392 9. CL=0.00388 9.
(2599)	11724	3.2×10 ⁻⁵ 12	5.6 2	0.00082 <i>32</i> [†]	$ε_{M+=0.000652}$ 14. av Eβ=677 4. $ε_{K}=0.0345$ 6. CL=0.00342 6.
(2660)	11663	8.×10 ⁻⁶ 3	6.2 2	0.00023 10	av $E\beta$ =705 4. εK =0.0307 5. CL=0.00304 5.
(2707)	11616	8.×10 ⁻⁶ 3	6.3 2	0.00024 10	$\epsilon_{M+=0.000511}$ 8. av ϵ_{β} =727 5. $\epsilon_{K=0.0282}$ 6. CL=0.00280 6.
(2774)	11549	1.8×10 ⁻⁵ 6	5.9 2	0.00066 20	$\epsilon M_{+}=0.000470 T0.$ av E $\beta=757 4.$ $\epsilon K=0.0251 4.$ CL=0.00249 3. cM_{+}=0.000418 6.
(2851)	11472	8.9×10 ⁻⁶ 25	6.2 1	0.00036 10	$\epsilon M = 0.000418 \text{ b.}$ av $\epsilon \beta = 793 \text{ 4.}$ $\epsilon K = 0.0221 \text{ 3.}$ $\epsilon M = -0.000219 \text{ 3.}$ $\epsilon M = -0.000368 \text{ 5.}$
(2871)	11452	2.0×10 ⁻⁵ 5	5.9 1	0.00083 20	av $E\beta = 802 5$. $\varepsilon K = 0.0214 4$. CL = 0.00212 4. $\varepsilon M + = 0.000356 6$. $I(\varepsilon + \beta^+)$: probably for a doublet.
(2905)	11418	6.×10 ⁻⁶ 5	6.4 4	0.00028 20	av $E\beta = 818 4.$ $\varepsilon K = 0.0202 3.$ CL = 0.00200 3. $\varepsilon M = -0.000337 5.$
(3011)	11312	$1.4 \times 10^{-5} 6$	6.1 2	0.00075 <i>30</i> [†]	av $E\beta$ =868 3. εK =0.01712 17. CL=0.001696 17. εM =0.00285 3
(3106)	11217	0.00011 2	5.2 1	0.0068 11	$\epsilon M = 0.00283 S.$ $av E\beta = 911 3.$ $\epsilon K = 0.01493 I4.$ CL = 0.001479 I4. $\epsilon M = 0.00025$
(3118)	11205	6.2×10 ⁻⁵ 13	5.5 1	0.0038 8	$\epsilon_{M+=0.00025}$. av $\epsilon_{\beta}=917$ 3. $\epsilon_{K}=0.01468$ 14. CL=0.001454 14.
(3181)	11142	3.4×10 ⁻⁵ 6	5.8 1	0.0023 4	εM+=0.00024 . av Eβ=946 4. εK=0.01343 14. CL=0.001330 14. cM=0.00022
(3209)	11114	$1.6 \times 10^{-5} 4$	6.1 <i>1</i>	0.0011 3	av $E\beta = 959 4$. $\varepsilon K = 0.01292 13$.

 ε, β^+ radiatons (continued)
	ε, β^+ radiatons (continued)						
Eε	E(level)	Iε	Log ft	$I(\varepsilon + \beta^+)$	Comments		
					CL=0.001280 13.		
					εM +=0.00022.		
(3235)	11088	1.4×10^{-6} 14	725	0.00010.70	$I(\varepsilon + p^{-1})$: probably for a doublet. av F β -971 6		
(3233)	11000	1.4×10 14	1.2 5	0.00010 10	$\epsilon K = 0.01247 22.$		
					CL=0.001235 22.		
(229)	11027	0, 10-6, 2	(1)	0.00000.20	$\varepsilon M += 0.000208 \ 4.$		
(3286)	11037	9.×10 ° 3	6.4 2	0.00069 20	av $Ep=995$ 4. eK=0.01165 13		
					$CL=0.001154 \ 13.$		
		_			$\epsilon M += 0.00019$.		
(3336)	10987	1.3×10^{-6} 12	7.2 4	0.00011 10	av E β =1019 6.		
					$\varepsilon K = 0.01091 I 8.$		
					$\epsilon M += 0.000182 3.$		
(3350)	10973	2.4×10^{-5} 5	6.0 1	0.0020 4	av E β =1025 4.		
					εK=0.01071 12.		
					CL=0.001061 11.		
(3367)	10956	2.3×10^{-5} 5	601	0.0020.4	EM += 0.00018. av $EB = 1033.5$		
(5507)	10)50	2.3×10 5	0.0 1	0.0020 4	$\epsilon K = 0.01048 \ I2.$		
					CL=0.001038 12.		
					εM +=0.00017.		
(3414)	10909	3.9×10^{-6} 22	6.8 <i>3</i>	0.00035 20	av $E\beta = 1056 \ 3.$		
					EK=0.00988 8. CL=0.000978 8		
					$\varepsilon M += 0.00016$.		
(3474)	10849	$3.9 \times 10^{-5} 20$	5.8 2	0.0038 20	av E β =1083 <i>3</i> .		
					$\varepsilon K = 0.00917 \ 8.$		
					$CL=0.000908 \ 8.$ $cM \pm -0.00015$		
(3506)	10817	1.2×10^{-5} 3	6.3.1	$0.0012.3^{\dagger}$	$av E\beta = 1098.4$		
(0000)	10017	112/(10 0	010 1	0.00120	$\varepsilon K = 0.00882$ 9.		
					CL=0.000873 9.		
(2547)	10776	0.000120.70	521	0.0128.20	$\varepsilon M += 0.00015$.		
(3347)	10770	0.000120 19	5.5 1	0.0128 20	$\epsilon K = 0.00840$ 7.		
					CL=0.000832 7.		
		C.			$\varepsilon M += 0.00014$.		
(3569)	10754	$8. \times 10^{-6}$ 3	6.5 2	0.0009 3	av $E\beta = 1128 5$.		
					EK=0.00818 9. CL=0.000810 9.		
					$\varepsilon M += 0.00014$.		
(3598)	10725	5.2×10^{-5} 11	5.7 1	0.0059 12	av E β =1142 <i>3</i> .		
					$\varepsilon K = 0.00791 \ 6.$		
					CL=0.000/83 0. eM+=0.000132		
(3630)	10693	$7. \times 10^{-6}$ 3	6.6 2	0.0008 3	av $E\beta = 1157 3$.		
()					ε K=0.00762 6.		
					CL=0.000755 6.		
(2725)	10508	7.0×10-6.27	651	0.00104.29	$\epsilon M += 0.000127$.		
(3723)	10390	1.9×10 ~ 21	0.3 1	0.00104 28	av = p - 1202 4. $\epsilon K = 0.00685 7.$		
					CL=0.000678 6.		
		~			$\varepsilon M += 0.00011$.		
(3741)	10582	1.3×10^{-5} 3	6.3 1	0.0017 4	av $E\beta = 1209 \ 3.$		
					$\epsilon \mathbf{N} = 0.000/3 \ J.$		

			<u>-, p</u>	(
Eε	E(level)	Iε	Log ft	$I(\varepsilon + \beta^+)$	Comments
					CL=0.000667 5.
					<i>ε</i> M+=0.0001120 8.
(3804)	10519	5.8×10^{-6} 14	6.7 1	0.00083 20	av E β =1239 4.
					ε K=0.00629 6.
					CL=0.000622 6.
(2010)	10504	96,10-5 12	551	0.0125 10	EM += 0.000105.
(3819)	10304	8.0×10 15	5.5 1	0.0125 19	av Ep=1240.5. eK = 0.00619.4
					CL=0.000613 4.
					εM+=0.0001029 7.
(3853)	10470	6.8×10^{-5} 9	5.6 1	$0.0102 14^\dagger$	av E β =1262 3.
					εK=0.00597 4.
					CL=0.000591 4.
(205.6)	10445	10 10 5 3	6 Q J	0.0000 5	$\varepsilon M + = 9.94 \times 10^{-3} 6.$
(38/6)	10447	1.8×10^{-5} 3	6.2 <i>I</i>	0.0028 5	av $E\beta = 12/4 3$.
					EK=0.00582 4. CI = 0.000577 A
					$eM_{+-9} 69 \times 10^{-5} 6$
(3957)	10366	1.8×10^{-6} 12	7.2.3	0.00030 20	$av E\beta = 1312.5$
(5)51)	10500	1.0/(10) 12	1.20	0.00000 20	$\varepsilon K = 0.00536 5.$
					CL=0.000530 5.
					ε M+=8.91×10 ⁻⁵ 9.
(3991)	10332	2.7×10^{-6} 12	7.1 2	0.00046 20	av E β =1328 <i>3</i> .
					$\varepsilon K = 0.00518 \ 3.$
					CL=0.000513 3.
(4112)	10211	7 1 10 -5 11	571	0.0120.22	$EM += 8.61 \times 10^{-5}$ 5.
(4112)	10211	7.1×10 ° 11	5.7 1	0.0139 22	av = Ep = 1380 3. cK = 0.00460 3
					CL=0.00045
					$\varepsilon M + = 7.64 \times 10^{-5} 5.$
(4130)	10193	1.1×10^{-6} 5	7.5 2	0.00021 10	av E β =1395 5.
					εK=0.00452 4.
					CL=0.000447 4.
		<i>c</i>			$\varepsilon M + = 7.51 \times 10^{-5}$ 7.
(4169)	10154	$1.6 \times 10^{-6} 5$	7.3 2	0.00032 10	av $E\beta = 14145$.
					\mathcal{E} K=0.00435 4. CL=0.000421 4
					cL=0.0004314. $cM\pm -7.24\times 10^{-5}.7$
(4196)	10127	7.1×10^{-6} 19	671	0.0015.4	AV F B - 1427 3
(41)0)	10127	/.1/(10 1)	0.7 1	0.0015 7	$\varepsilon K = 0.004238 \ 23.$
					CL=0.00042 .
					$\varepsilon M + = 7.05 \times 10^{-5} 4.$
(4273)	10050	$1.9 \times 10^{-5} 4$	6.3 1	0.0042 9	av E β =1463 <i>3</i> .
					εK=0.003949 21.
					CL=0.00039.
(10.1.1)	0.050	1 10 6 0	5 00	0.0000 5	$\varepsilon M + = 6.5' \times 10^{-5} 4.$
(4344)	9979	4.×10 ° 2	1.0 3	0.0009 5	av $E\beta = 149/3$.
					CL=0.0003703 22.
					$eM + = 6.16 \times 10^{-5} 4$
(4371)	9952	$6 \times 10^{-7} 4$	7.8.3	0.00016 10	av $E\beta = 1510.5$.
、-·-/					εK=0.00362 <i>3</i> .
					CL=0.000358 3.
		~			$\varepsilon M + = 6.01 \times 10^{-5} 5.$
(4403)	9920	2.0×10^{-5} 4	6.3 1	0.0050 9	av E β =1525.8 24.
					εK=0.003514 16.

 ε, β^+ radiatons (continued)

	ε, β^+ radiatons (continued)						
Eε	E(level)	Iε	Log ft	$I(\varepsilon + \beta^+)$	Comments		
					CL=0.00035 .		
(4404)	0920	0.4×10-6.25	661	0.0026.7	εM +=5.84×10 ⁻⁵ 3.		
(4494)	9829	9.4×10 ° 25	0.0 1	0.0026 /	aV Ep=1570.5. eK=0.00325.3.		
					CL=0.00032 .		
					$\varepsilon M + = 5.40 \times 10^{-5} 5.$		
(4510)	0011	2 110=5 5	< 1 I	0.0000 15	$I(\varepsilon + \beta^+)$: probably for a doublet.		
(4512)	9811	3.1×10 - 5	0.1 1	0.0088 15	aV Ep=1578 5. eK=0.003197 16.		
					CL=0.00032 .		
		~			$\varepsilon M + = 5.32 \times 10^{-5} 3.$		
(4722)	9601	9.6×10^{-5} 15	5.7 1	0.032 5	av $E\beta = 1679.4\ 25.$		
					EK=0.00268771. CL=0.00027		
					$\varepsilon M + = 4.468 \times 10^{-5}$ 18.		
(4871)	9452	0.00029 5	5.2 1	0.110 17	av $E\beta = 1751.4\ 25.$		
					εK=0.002389 10. CL =0.000236		
					EL=0.000230. $EM=3.973\times10^{-5}$ 16		
(4896)	9427	0.00014 3	5.5 1	0.055 10	av $E\beta = 1764 \ 4$.		
					$\varepsilon K = 0.002344 \ 13.$		
					CL=0.00023. $cM_{\pm}=2.807\times10^{-5}.22$		
(4907)	9416	0.00011 2	5.6 1	0.044 8	$EMI + -5.897 \times 10^{-22}$ av $E\beta = 17695$.		
					εK=0.002324 16.		
					CL=0.00023.		
(4963)	9360	0.00018.3	541	0.073.11	$\mathcal{E}M$ +=3.86×10 ⁻⁵ 3. av E β -1795 9.25		
(4703)	2300	0.00010 5	5.41	0.075 11	$\varepsilon K = 0.002227 \ 9.$		
					CL=0.0002204 9.		
6 7552	7659.2	0.040.2	2 20 4	10 1 10	$\varepsilon M + = 3.704 \times 10^{-5} 14.$		
6./5E3	/658.3	0.042 3	3.30 4	49.4 40	aV Ep=2625.8 21. eK=0.00077		
					$CL=7.594\times10^{-5}$ 17.		
					ε M+=1.276×10 ⁻⁵ 3.		
					Energy: $E(\beta^+)=5730\ 150\ (1968Ar03)$		
(7743)	6580	0.0011.5	502	2110	$1\beta: 50 T (1968Ar03).$ av E β =3156 3		
(1145)	0500	0.0011 5	5.0 2	2.1 10	$\varepsilon K = 0.00046$.		
					CL= 4.521×10^{-5} 12.		
0.5552	5(12)1	0.0020_10	4 6 1	11 5 20	εM +=7.596×10 ⁻⁶ 19.		
8.55E3	5613.1	0.0039 10	4.6 1	11.5 30	aV Ep=3633.2 21. eK=0.0003068.5.		
					$CL=3.035\times10^{-5}$ 5.		
					ε M+=5.099×10 ⁻⁶ 9.		
					Energy: $E(\beta^+)=7530\ 200\ (1968Ar03)$		
9 78E3	4490 6	0.0039.11	471	17.5	1β : 15% <i>I</i> (1968Ar03). av E β =4188 9 2 <i>I</i>		
лно <u>д</u> е		0100009 11	, 1	1,0	$\varepsilon K = 0.0002048 \ 3.$		
					$CL=2.026\times10^{-5}$ 3.		
					$\varepsilon M + = 3.403 \times 10^{-6} 5.$		
					Energy: $E(p^{-})=8/60 \ I00 \ (1968Ar03)$ I $\beta \cdot 15\% \ I \ (1968Ar03)$		
10602	3735.8	0.0034 9	4.8 1	19 5	av $E\beta = 4563.2 21.$		
					εK=0.000160.		
					$CL=1.59\times10^{-5}$.		
					$ENI+=2.666 \times 10^{\circ}$ 4.		

			ε, β	+ radiatons (co	ntinued)
Eε	E(level)	Iε	Log ft	$I(\varepsilon + \beta^+)$	Comments
					Energy: $E(\beta^+)=9580 \ 40 \ (1968Ar03).$ I β : 20% <i>1</i> (1968Ar03).

[†] Combined feeding from ε_p and ε_α decays, although 1982Ho09 treated the two levels as separate in the two decays.

Decay Scheme

Intensities: $I_{(\gamma+ce)}$ per 100 parent decays

 $^{40}_{20}{\rm Ca}_{20}$

⁴¹Ti εp decay (80.4 ms) 1997Ho12,1998Li46,1998Bh12

Parent: ⁴¹Ti: E=0; $J\pi=3/2+$; $T_{1/2}=80.4$ ms 9; Q=11860 *SY*; % ε p=100 *10* Q(g.s.): 11860 *100* (syst,2003Au03). ⁴¹Ti decays to ⁴⁰Ca by ε p (\approx 100%). Other main references: 1985Zh05, 1974Se11 (also 1973SeYM), 1973Go06, 1966Po12, 1964Re08. Others ($T_{1/2}$): 1996Fa09, 1997Tr11. Measured E(p), I(p), p γ coin, $T_{1/2}$. Others: 1998Jo20, 1977Ce05, 1976Sz04, 1973Ha77.

⁴⁰Ca Levels

[†] From Adopted Levels.

Delayed Particles (⁴⁰ Ca)				
E(⁴⁰ Ca)	E(p) [‡]	$E(^{41}Sc)^{\phi}$	$I(p)^{\dagger\$}$	
3904	754 12	5774	0.29 13	
0	986 2	2095	5.69	
3736.69	1249 <i>15^a</i>	6102	1.05 19	
3904	1249 <i>15^a</i>	6270	1.05 19	
0	1542 2	2666	4.2 13	
0	1587 10	2712	0.48 23	
3904	1857 28	6893	0.8 3	
3352.62	1977 <i>10^a</i>	6465	0.56 14	
3904	1977 <i>10^a</i>	7021	0.56 14	
3736.69	2063 <i>30^b</i>	6938	1.1 2	
0	2271 3	3413	5.0 7	
0	2414 3	3560	3.4 <i>3</i>	
0	2.54×10 ³ 13	3690	0.62 12	
0	2656 7	3808	1.5 3	
0	2804 8	3960	0.89 20	
0	3083 4	4246	15.8 5	
0	3152 19	4317	0.80 13	
0	3343 10	4512	0.60 7	
0	3483 9	4656	0.65 7	
0	3600 5	4776	2.15 25	
0	3691 4	4869	3.7 5	
0	3749 5	4929	7.4 5	
0	3832 8	5014	0.62 5	
0	3890 17	5073	0.43 8	
0	4187 4	5378	3.72 12	
0	4307 11	5501	0.34 10	
0	4385 6	5581	1.69 12	
0	4570 7	5767	0.88 13	
0	4638 4	5840	5.3 4	
0	4683 10	5886	1.06 16	
0	4735 <i>3</i>	5940	25.0 10	
0	4829 10	6036	0.8 3	
0	4876 15	6084	0.84 9	
0	4944 11	6154	0.76 13	
0	5157 14	6372	0.40 11	
0	5219 40	6435	0.65 12	
0	5337 <i>23</i>	6557	0.37 20	
0	5441 40	6673	0.60 12	

Delayed Protons	(continued)
-----------------	-------------

E(⁴⁰ Ca)	E(p) [‡]	E(⁴¹ Sc) ^{<i>\phi</i>}	$I(p)^{\dagger\$}$
0	5601 15	6827	0.065 7
0	5718 <i>14</i>	6947	0.094 8
0	5790 27	7021	0.56 14
0	5947 <i>19</i>	7182	0.102 10
0	6121 <i>19</i>	7360	0.072 7
0	6371 <i>3</i> 8	7617	0.050 15
0	6650 <i>50</i>	7903	0.050 5
0	6725 60	7980	0.07 2

[†] For absolute intensity per 100 decays, multiply by \approx 1.0. [‡] E(p)(lab) values are from a weighted average of 1998Bh12, 1998Li46, 1997Ho12 and 1974Se11, except where ⁴ E(p)(rab) values are from a weighted average in the product of the

Decay Scheme

	E(p)	I(p)	$E(^{41}_{21}Sc_{20})$	$E(^{40}_{20}Ca_{20})$
p 1	986.0	5.6	2095	0
p ²	1542.0	4.2	2666	0
p 3	1587.0	0.48	2712	0
P ⁴	2271.0	5.0	3413	0
p 5	2414.0	3.4	3560	0
p 6	2540.0	0.62	3690	0
p 7	2656.0	1.5	3808	0
p ⁸	2804.0	0.89	3960	0
p 9	3083.0	15.8	4246	0
p 10	3152.0	0.80	4317	0
p 11	3343.0	0.60	4512	0
p12	3483.0	0.65	4656	0
p13	3600.0	2.15	4776	0
p 14	3691.0	3.7	4869	0
p15	3749.0	7.4	4929	0
p 16	3832.0	0.62	5014	0
p17	3890.0	0.43	5073	0
p18	4187.0	3.72	5378	0
p19	4307.0	0.34	5501	0
p 20	4385.0	1.69	5581	0
p21	4570.0	0.88	5767	0
p22	4638.0	5.3	5840	0
p23	4683.0	1.06	5886	0

 $^{40}_{20}{
m Ca}_{20}$

151

p1-23

Decay Scheme (continued)

⁴⁴V εα decay (111 ms) 1971Ce02

Parent: ⁴⁴V: E=0; $T_{1/2}$ =111 ms 7; Q=8.30×10³ *12*; T: Half-life from 1997Ha04. Other: 90 ms 25 (1971Ce02).

	40	Ca Levels
E(level)	J^{π}	_
0	0+	-
	Delayed	Particles (⁴⁰ Ca)
E(⁴⁰ Ca)	$E(\alpha)$	E(⁴⁴ Ti)
0	2770 20	8.18E+3

Decay Scheme

Inelastic scattering

Includes elastic scattering: (HI,HI). HI=⁶Li, ⁷Li, ⁹Be, ¹⁰B, ¹¹B, ¹²C, ¹³C, ¹⁴C, ¹⁴N, ¹⁶O, ¹⁷O, ¹⁸O, ²⁰Ne, ²⁸Si, ³²S, ³⁷Cl, ⁴⁰Ar, ⁴⁰Ca, ⁴⁸Ca, ⁸⁶Kr. (⁶Li,⁶Li'):. 1982Co12: E=30 MeV. Measured $\sigma(\theta)$, $\theta(\varepsilon M)=9^{\circ}$ - 78°; DWBA double-folding model analysis, deduced deformation lengths. Levels at 0, 3740, 3900, 4490. 1977Bo21: E=30 MeV. Measured $\sigma(\theta)$, coupled-channel analysis, Hauser-Feshbach calculations. 1987Va31: E=34 MeV. Also ${}^{6}\text{Li}({}^{40}\text{Ca}, {}^{40}\text{Ca}')$ E=227 MeV. Measured $\sigma(\theta)$, DWBA analysis. (⁶Li, ⁶Li):. 1989Na02: E=210 MeV. Measured $\sigma(\theta)$. 1980An16: E=28, 32 MeV. 1981Fu04: E=88 MeV. DWBA and coupled-channel analysis. 1981Sc16: E=99 MeV. Measured $\sigma(\theta)$, optical-model analysis. 1977Cu02: E=28, 34 MeV. Deduced optical-model parameters; $\sigma(\theta)$. 1976Ch27: E=50.6 MeV. Measured $\sigma(\theta)$. 1971Da33: E=30 MeV. Measured $\sigma(\theta)$. 1969Be90: E=20 MeV. Measured $\sigma(\theta)$. (⁷Li,⁷Li'):. 1985Sa25: E=34 MeV. Measured $\sigma(\theta)$, $\theta(\epsilon M)=10^{\circ}$ - 135°; DWBA coupled-channel analysis. Levels at 3740, 3900, 4490, 6290 1982Ec01: E=45 MeV. Measured $\sigma(\theta)$, $\theta(\varepsilon M)=12^{\circ} - 80^{\circ}$; double folding model. (⁷Li,⁷Li):. 1980CuZZ, 1977Cu02: E=28, 34 MeV. Deduced optical-model parameters from $\sigma(\theta)$. 1969Be90: E=20 MeV. Measured $\sigma(\theta)$. (⁹Be,⁹Be'):. 1980Ec04: E=45, 60 MeV. Measured $\sigma(\theta)$; DWBA analysis for 3-,5- levels; double folding model. Levels at 3730, 3900, 4490, 5900, 6400, 6940, 7300. (⁹Be,⁹Be):. 1980Ec01: E=45, 60 MeV. Measured $\sigma(\theta)$. 1983Ec01: E=35-60 MeV. Measured $\sigma(\theta)$. 1984Fu10: E=158 MeV. Measured $\sigma(\theta)$. 1985Wi18: E=30, 45 MeV. Measured $\sigma(\theta)$. (¹⁰B,¹⁰B):. 1983BoZU: E=31 MeV. Measured $\sigma(\theta)$. 1981GlZY, 1980Gl03: E=46.6 MeV. Measured $\sigma(\theta)$. $(^{11}B, ^{11}B')$: 1981Hn01: E=51.5 MeV. Measured $\sigma(\theta)$, $\theta(\varepsilon M)=10^{\circ} - 60^{\circ}$; DWBA coupled-channel, double-folding model analysis. Levels at 3740, 3900, 4490. Deduced deformation lengths. 1981Hn04: E=40 MeV. Measured $\sigma(\theta)$, DWBA analysis; deduced deformation lengths. (¹¹B,¹¹B):. 1983BoZU: E=32, 68 MeV. Measured $\sigma(\theta)$. 1981GlZY, 1980Gl03: E=51.5 MeV. Measured $\sigma(\theta)$. 1980Ma31: E=32 MeV. Measured $\sigma(\theta)$, DWBA analysis. $(^{12}C, ^{12}C'):.$ 1981Bu08: E=1032 MeV. Measured $\sigma(\theta)$, $\theta=4^{\circ}$ - 16°. Data for g.s. (^{12,12}C):. 1986Sa29: E=10-35 MeV. Measured $\sigma(\theta)$. 1980Ku03, 1979Ku02: ¹²C(⁴⁰Ca,⁴⁰Ca) E=18-40 MeV; 80-178 MeV. Measured $\sigma(\theta)$. 1978Re06, 1979Re03: E=135-150 MeV; 51 MeV. Measured σ at 180°. Optical-model analysis. 1976MoYU: E=45 MeV. Measured $\sigma(\theta)$. 1972Sc21: E=114 MeV. $(^{13}C, ^{13}C')$: 1977Bo17: E=68 MeV. Measured $\sigma(\theta)$, $\theta=8^{\circ}$ - 40°; CCBA analysis; levels at 3740, 3900, 4490. Deduced deformation lengths relative to those from (p,p'), normalized to 1.0 for 3900 level. (¹⁴C,¹⁴C'):. 1981Ha23: E=51 MeV. Measured $\sigma(\theta)$; $\theta(\varepsilon M)=13^{\circ}$ - 53°; DWBA and CCBA analysis. Levels at 3740, 3900, 4480. $(^{14}N, ^{14}N'):.$ 1978Bu10: E=161 MeV. Measured $\sigma(\theta)$, $\theta(\varepsilon M)=12^\circ$. Levels at 6900 and 7900. Deduced giant resonances. 1975Wi02: (¹⁴N, ¹⁴N) E=24-54 MeV. Measured $\sigma(\theta)$. $(^{16}O, ^{16}O'):.$ 1982Re03, 1978Re02: E=60 MeV. Measured $\sigma(\theta)$, $\theta(\varepsilon M)=10^{\circ}$ - 65°; energy uncertainty ≈ 100 keV; DWBA fits with coupled channels analysis. Levels at 3740, 3900, 4490. 1981Al12: E=51.5, 54 MeV. Measured $\sigma(\theta)$. 1981Ku10: E=50-70 MeV. Measured $\sigma(\theta)$, coupled-channel analysis.

1973Be13: E=60 MeV. Measured $\sigma(\theta)$. (¹⁶O,¹⁶O):. 1985Me14: E=1503 MeV. 1988Ro01: E=94 MeV. Measured $\sigma(\theta)$. 1979Vi13: E=40-214 MeV. Measured fusion σ . 1979Ku02: E=50 MeV. Also ${}^{16}O({}^{40}Ca, {}^{40}Ca)$ E=80-178 MeV. Measured $\sigma(\theta)$. 1973Ch10: E=47, 49 MeV. 1972Gr25: E=25-45 MeV. Measured $\sigma(\theta)$. 1971Be26: E=20-40 MeV. Measured $\sigma(\theta)$. 1971Or02: E=36-48 MeV. Measured $\sigma(\theta)$. 1969Ec01: E=23-42 MeV. Measured $\sigma(\theta)$. (¹⁷O,¹⁷O'):. 1989AIZQ: E=1428 MeV. Measured σ , $\theta(\varepsilon M)$ =small. Energy uncertainty <400 keV. Levels at 3740, 3900, 4490. (¹⁸O,¹⁸O'):. 1982Re14, 1982Re03: E=62.14 MeV. Measured $\sigma(\theta)$, $\theta(\varepsilon M)=10^{\circ}$ - 65°; DWBA fits with coupled channels in ⁴⁰Ca and ¹⁸O. Levels at 3740, 3900, 4490. Deduced deformation lengths. 1972Ei07: (¹⁸O, ¹⁸O) E=25-42 MeV. Measured $\sigma(\theta)$. $(^{20}$ Ne 20 Ne'):1978Ng01: E=36-95 MeV. Measured $\sigma(\theta)$; optical-model, DWBA, coupled-channel analysis. 1980Se06: (²⁰Ne,²⁰Ne) E=151 MeV. Measured $\sigma(\theta)$, optical-model parameters. (²⁸Si,²⁸Si'):. 1986Vi02: E=225 MeV. Measured $\sigma(\theta)$, $\theta(\varepsilon M)=4^{\circ} - 30^{\circ}$; DWBA analysis; energy uncertainty ≈ 400 keV. Unresolved doublet: 3740+3900. Deduced deformation length. (³²S,³²S'):. 1986Bi02: E=100, 120, 151.5 MeV. Measured $\sigma(\theta)$; folding model analysis for 3740 level. 1975Re17: E=100 MeV. Measured $\sigma(\theta)$ for $\theta=20^{\circ}$ - 60°; DWBA analysis for 3900 level. (³²S,³²S):. 1988Bi06: E=90, 100, 110, 120, 151.5 MeV. Measured $\sigma(\theta)$, folding-model analysis. 1984Ba27: E=100, 120, 151.5 MeV. Measured $\sigma(\theta)$; optical-model analysis. 1989Di06: E=90, 110 MeV. Measured $\sigma(\theta)$. 1977Ri03: E=58-130 MeV. Measured $\sigma(\theta)$. (³⁷Cl,³⁷Cl'):. 1997Wi17: E=97.3, 115.3 MeV. Measured $\sigma(\theta)$. 1990Fe03: (³⁷Cl,³⁷Cl) E=120.5 MeV. Measured $\sigma(\theta)$; folding model and DWBA analysis. $({}^{40}\text{Ar}, {}^{40}\text{Ar'})$: 1987Fr20: E=1760 MeV. Measured σ , $\theta(lab)=2.5^{\circ}$. Giant resonances at 8000 and 18000. 1978Wa18, 1979Wa06: (⁴⁰Ar,⁴⁰Ar) E=191, 236, 272 MeV. Measured $\sigma(\theta)$, optical-model parameters. (⁴⁰Ca,⁴⁰Ca'):. 1982B104: E=160, 280, 400 MeV. Measured $\sigma(\theta)$, DWBA analysis: FWHM=1.5 MeV. Levels and giant resonances at 3740. 7800, 10700, 14000, 17600, 26000. See also 1981Ro01, 1980Fr02, 1979Tr10, 1977Fr14 from the same group where ${}^{40}Ca({}^{40}Ca,X)$ reaction was studied at E(${}^{40}Ca$)=284 and 400 MeV. 2004Sc07, 1993Sc29: E=50 MeV/nucleon. Measured (⁴⁰Ca)(p) coin; deduced two-phonon double GQR and multi-phonon giant resonance features. (⁴⁰Ca,⁴⁰Ca):. 1977Do02: E=55-120 MeV. Measured $\sigma(\theta)$. 1977Ri03: E=58-130 MeV. Measured $\sigma(\theta)$. 1975Do07: (40 Ca, 40 Ca) E=110-150, 170-200 MeV. Measured σ . (⁴⁸Ca.⁴⁸Ca): 1990Ti04: E=132, 140 MeV. Measured $\sigma(\theta)$, coupled-channel analysis. (⁸⁶Kr,⁸⁶Kr'):. 1999Ot02: E=5160 MeV. Measured $\sigma(\theta)$, $\theta=1^{\circ}$ - 6°; fitted elastic and inelastic channels from 13-25 MeV excitation. Energy uncertainty=1400 keV. Deduced E1 and E2 strength distributions. ⁴⁰Ca Levels $J^{\pi\dagger}$ L[#] Comments E(level) 0 +0 0 β_3 R=0.49 (⁶Li,1982Co12); 1.15 (¹¹B,1981Hn01); 1.29 *18* (²⁸Si,1986Vi02). 3740 3-3 $\beta_3 R(p,p') / \beta_3 R(^{13}C,^{13}C') = 1.3$ (1977Bo17). β_2 R=1.04 (⁶Li,1982Co12); 0.44 (¹¹B,1981Hn01); 1.37 *14* (²⁸Si,1986Vi02). 3900 2 +2 $\beta_5 R=0.53$ (⁶Li,1982Co12); 1.15 (¹¹B,1981Hn01). 4490 5-5 $\beta_5 R(p,p')/\beta_5 R(^{13}C,^{13}C')=1.9$ (1977Bo17).

⁴⁰Ca Levels (continued)

E(level)	$\mathrm{J}^{\pi\dagger}$	L [#]	Comments
5900			
6290			
6400			
6940			
7300			
$7.8 \times 10^3 \ 10^{\ddagger}$			Probably lower excitation of the octupole resonance.
$10.7 \times 10^3 \ 10^{\ddagger}$			
$14.0 \times 10^3 \ 10^{\ddagger}$			
17.6×10 ³ 10 [‡]			GQR; wide structure.
26×10^{3} [‡]			E(level): wide structure.
[†] From Adopted [‡] Giant resonance [#] Based on adopt	Levels. e. ted J π .		
			¹⁴ N(²⁸ Si,d) 1978BaYQ

1978 BaYQ: E=66,70,80 MeV. Measured deuterons using $\Delta E\text{-}E$ telescope. At $\theta\text{=}0;$ no 10+ level found.

		⁴⁰ Ca Levels
$E(level)^{\dagger}$	$J^{\pi\dagger}$	$d\sigma/d\Omega \ \mu b/sr^{\ddagger}$
6930	6+	≤0.2
8098	8+	≤ 0.2

[†] From Adopted Levels. [‡] At 0° and E=70 MeV.

32 S(12 C, α) 1972Mi08

1972Mi08: E=30 MeV. Measured $\sigma(E\alpha)$, deduced multiparticle-multihole states.

	⁴⁰ Ca Levels						
E(level)	$J^{\pi\dagger}$	$d\sigma/d\Omega ~(\mu b/sr)^{\ddagger}$	Comments				
0	0+	≈0.31					
3350 25	0+	3.78					
3700 25	3-	≈0.91					
3910 25	2+	6.96					
4500 25	5-	1.04					
5180 25		5.41					
5260 25		6.84					
5610 25		11.0	E(level): doublet: 5614+5629.				
5900 25		3.51	E(level): doublet.				
6300 25		3.51					
6540 25		12.3	E(level): triplet: 6508+6543+6582.				
6910 25		16.0	E(level): triplet: 6909+6931+6938.				
7270 25		8.17	E(level): triplet: 7239+7278+7301.				
7980 25		40.3	E(level): triplet: 7973+7977+8019.				
8110 25		20.7	E(level): triplet: 8091+8113+8135.				
8320 25		11.8	E(level): multiplet: 8323+8338+8359+8364.				
8590 25		27.3	E(level): doublet: 8579+8587.				
8790 25		15.7	E(level): doublet: 8764+8810.				

[†] From Adopted Levels for levels up to 5 MeV. Higher groups are mostly unresolved multiplets. [‡] At $\theta(lab)=7.5^{\circ}$.

36 Ar(α , γ):resonances 1973Wa08,1987He05,1982Pr05

1973Wa08, 1973Br34: E=5.3-16.8 MeV. Measured yield, $\sigma(\theta)$ in giant-resonance region. 1987He05: E=5.48-5.515 MeV. Measured yield of 2814 γ from first 2+ level of ³⁶Ar and 2120 γ . 1982Pr05: E=5.495-5.505 MeV. Measured excitation functions, γ spectra at 5496 resonance, $\Delta(E\gamma)=1$ keV. 1967Na10: E=3-5.7 MeV. Measured σ for 5620 resonance.

⁴⁰ Ca Levels							
$E(level)^{\dagger a}$	$J^{\pi \ddagger}$	$(2J+1)\Gamma_{\alpha}\Gamma_{\gamma0}/\Gamma (eV)^{a}$	Comments				
0	0+						
9868.8		0.14 3					
10321	1 +		E(level): from Adopted Levels.				
11977 <i>1</i> #			$E\alpha = 5486.$				
11987 <i>1</i> #	0 +		Εα=5497.				
			Proton decay to 2522 level in 39 K: α decay to 2814 level in 36 Ar. This resonance				
			also studied by 1982Pr05.				
11989 <i>1</i> [#]			$E\alpha = 5499.$				
11997 <i>1</i> #			$E\alpha = 5508.$				
12097 ^{&}			Εα=5619.				
12202 ^{&}			$E\alpha = 5736.$				
12332 ^{&}			$E\alpha = 5880.$				
12421 ^{&}			$E\alpha = 5979.$				
12971		3.4	$E\alpha = 6590.$				
13249 [@]		9.7	$E\alpha = 6900.$				
13484		3.4	$E\alpha = 7160.$				
13718		3.7	Εα=7420.				
13952 [@]		14.6	Εα=7680.				
14096		14.4	$E\alpha = 7840.$				
14419		4.7	$E\alpha = 8200.$				
14509		4.5	Εα=8300.				
14869		6.3	$E\alpha = 8700.$				
17669		5.8	$E\alpha = 11810.$				
17858		5.4	$E\alpha = 12020.$				
18146 [@]		11.3	$E\alpha = 12340.$				
18326		9.4	$E\alpha = 12540.$				
18452		6.9	$E\alpha = 12680.$				
18731 [@]		10.3	$E\alpha = 12990.$				
19037		4.9	Εα=13330.				

[†] $E\alpha(c.m.)+S(\alpha)$ (for ⁴⁰Ca); $E\alpha(c.m.)=(36/40)E\alpha(lab)$; $S(\alpha)(^{40}Ca)=7039.65$ 21 (2003Au03). The $E\alpha'$ s given under comments are measured values in the lab system.

[‡] From Adopted Levels.

[#] From 1987He05. [@] Doublet, see resonances in ${}^{39}K(p,\gamma)$ dataset.

[&] From 1967Na10.

^a From 1973Wa08 for levels above 12500.

γ ⁽⁴⁰ Ca)									
\mathbf{E}_{i}^{level}	\mathbf{J}_i^{π}	\mathbf{E}_{f}^{level}	$\mathbf{J}_f^{\boldsymbol{\pi}}$	Eγ	I_{γ}	Γγ.‡			
9868.8		0	0 +	9869					
11987	0+	10321	1 +	1666.5 4 ^a	42	0.34 5			
		9868.8		2119.5 4 ^a	58	0.45 7			

[‡] $\Gamma_{\alpha 0}/\Gamma=0.93$ 9 assumed. ^{*a*} From 1982Pr05.

³⁶Ar(⁶Li,d) 1979Fo04,1994Ya04,1998Ya21

1979Fo04, 1977Be65, 1975Fo04: E=17 MeV. Measured $\sigma(\theta)$, FWHM \approx 35 keV; 0+ levels. 1994Ya04, 1998Ya21, 1993Ya07: E=50 MeV. Measured $\sigma(\theta)$, FWHM=50-70 keV. Deduced L and S values, α cluster states. 1975An13: E=28 MeV. Measured σ and S for g.s.

	⁴⁰ Ca Levels								
E(level) [†]	$J^{\pi \ddagger}$	L [#]	S [#]	Comments					
0	0	0	0.30						
3350 5 18	0+	0	0.30						
3736 3	3_	3	0.06						
3909 3	$\frac{3}{2}$	2	0.00						
4494 4 9	21	5	0.016						
5206 6			0.18.0.18	F(level): doublet 5210+5250					
5283 4		$\frac{0+2}{4}$	0.10,0.10	E(10001). doublet $5210+5250$.					
5625 9 10		7 2	0.05	F(level): doublet 5614+5628					
5908 3		1	0.025	L(1001). doublet 5014+5020.					
6034 5		(2,3)	0.025	E(level): doublet 6025+6029					
6285.1 12		3	0.026						
6501 /		4@	0.030@						
6524 4		+ 1@	0.036@						
6577 3		4	0.030						
6756 8 17		2	0.087						
6900		2	0.12						
6030		6	0.12						
7300		0	0.25	E(level): unresolved multiplet with I =0 from $\sigma(\theta)$ distribution and cross					
7500		0		$E(10001)$. unconved multiplet with $E=0$ from $O(0)$ distribution and cross section below 3% of that to $g \in (1075E_0\Omega)$					
7460		(2)	(0.04)	section below 5% of that to g.s. (17751004) .					
7560		4	0.04						
7690		0	0.18						
7870		3	0.066						
7900		2	01000						
8050		2	0.15						
8150		1	0.21						
8270		4	0.055						
8280		0		E(level): from 1975Fo04.					
8380		4	0.043						
8420		0		E(level): from 1975Fo04.					
8550		3	0.076						
8600		2	0.11						
8780		2	0.11						
8930		2	0.14						
9140		(0,1)	0.50,0.15						
9240		6	0.11						
9360		3	0.10						
9500		2	0.10						
9700		3	0.20						
9870		2	0.14						
9950		1+5	0.034,0.01						
10080		2	0.20						
10150		5	0.06						
10340		8	0.25	L: from 1993Ya07.					
10590		3	0.10						
10690		7							
10700		1	0.28						
10800		5	0.14						
10900		3	0.11						
11100		0	0.60						
11210		0	0.62						
11300		4	0.40						
11370		5	0.12						
11470		5	0.12						

E(level) [†]	$J^{\pi \ddagger}$	$L^{\#}$	S [#]	Comments
11690		7	0.10	-
11800		5	0.08	
12020		2	0.15	
12100		2	0.19	
12170		2	0.13	
12340		5	0.10	
12450		4	0.061	
12650		7	0.11	
12720		3	0.20	
12900		4	0.07	
13050		4	0.06	
13200		4	0.05	
13300		4	0.045	
13470		4	0.28	
13620		6	0.016	
13720		6	0.023	
13830		7	0.18	
14000		4	0.06	
14190		4	0.07	
14380		6	0.03	
14500		6	0.03	
14680				
14750		4	0.078	
14850		(9)	(0.33)	
15060				
15140				
15250				
15330				
15600				

⁴⁰Ca Levels (continued)

15700

[†] From 1979Fo04 below 7400, from 1998Ya21 above 7400. [‡] From Adopted Levels.

[#] From 1994Ya04. 1979Fo04 five L and S values for levels below 7000; 1975Fo04 give L=0 for four levels above

7000. ^(a) Doublet 6500+6530 not resolved by 1994Ya04; relative S values from 1979Fo04 using summed value of 0.066 from 1994Ya04.

³⁶Ar(⁷Li,t) 1970CoZA

1970CoZA: E=16.6 MeV; measured $\sigma(\theta)$, $\theta=25^{\circ} - 60^{\circ}$. 1973Te04: E=28 MeV. Measured triton spectra.

		⁴⁰ Ca Levels
$E(\text{level})^{\dagger}$	J^{π}	Comments
3900		
5265		E(level): doublet: 5250+5280.
5615		E(level): doublet: 5610+5620.
6290		
6525		E(level): doublet: 6510+6540.
7010		E(level): doublet: 6910+7110.

[†] There are many additional peaks (probably multiplets) in the triton spectrum shown by 1970CoZA.

³⁶Ar(¹⁶O,¹²C) 1972Br40

1972Br40: E=45 MeV. Measured ¹²C spectra, deduced rotational band based on excited 0+. 1973Te04: (^{16}O , $^{12}C\gamma$) E=58 MeV. Measured (^{12}C) γ coin; γ -ray data for 3904 and 5278 levels. See (HI,xn γ) dataset.

⁴⁰ Ca Levels							
E(level)	J^{π}	Comments					
3353	0+	E(level): from Adopted Levels; not seen in $({}^{16}O, {}^{12}C)$.					
$3.9 \times 10^3 I$	(2+)						
5.25×10^3 10	(4+)						
$6.9 \times 10^3 I$	(6+)						
$9.9 \times 10^3 I$	(8+)						
$12.4 \times 10^3 I$	(10+)						

³⁸Ar(³He,n) 1977Bo16

1977Bo16: E=11.5 MeV. Measured neutrons by tof, $\sigma(\theta)$, FWHM \approx 50 keV. 1973Al23: E=15 MeV. Measured neutrons by tof, $\sigma(\theta)$, $\theta=0^{\circ}$ - 40°, FWHM \approx 100 keV.

E(level)	J^{π}	L	$d\sigma/d\Omega~(max)~(mb/sr)^\dagger$	Comments
0	0+	0	1.40	
3350 50		0	0.08	
3900 50		2	0.15 [‡]	
$5.21 \times 10^3 \ 10^{\#}$			< 0.04	
6950 50		1	0.20	S: at 10°.
7800 50		0	0.10	
8050 50		2	0.16 [‡]	
8280 50		0	0.56	
8470 50		0	0.53	
9380 50		0	0.40	
9600 50		2	0.24‡	
$10.65 \times 10^3 \ 10^{\#}$		0	0.14	
11980		0	0.28	
[†] Δt Ω° ev	cent u	horo	noted	
1 At 25°	cept w	mere	noteu.	
$\stackrel{\cdot}{=}$ At 25 . # From 10	73 4 123	2		

³⁹**K**(**p**,γ) 1990Ki07,1988Sc23

 $J\pi$ (³⁹K g.s.)=3/2+. Includes data for resonances.

1990Ki07: E=0.3-2.9 MeV. Measured E γ , I γ , lifetimes by DSAM.

1988Sc23: E=1.0-1.6 MeV. Measured Ey, Iy.

1985Se16: E=3.79-3.85 MeV. Measured $E\gamma$, $I\gamma$, resonances.

1981Ch04: E=0.7-2.9 MeV. Measured $\gamma(\theta)$, branching ratios.

1973Di02: E=6.5-17.5 MeV. Measured $\gamma(\theta)$, yields.

1971Da08 (also 1973DaYL): E=2.6-2.82 MeV, measured resonances.

1968Ba22: E=2.9-6.0 MeV. Measured σ , resonances.

1967Le12, 1966Le08, 1963Le08: measured γ , deduced J π 's.

Others: 1988A116, 1987Gu01, 1979Pa16 (also 1980PaZP), 1971Si29, 1971Ir01, 1970De30, 1970He08, 1968Li12, 1968Do12, 1967Fe04, 1966Go23, 1966En04, 1964Ta05, 1964Si16, 1964Ha35, 1963Si13, 1962Ra07, 1962Du05, 1961Po05, 1961Ec03.

 $\frac{{}^{40}Ca \text{ Levels}}{E(p)(lab) \text{ are given under comments, values are primarily from 1990Ki07 up to 2910, from 1985Se16 for 3804-3841,}$ from 1968Ba22 from 3863-5805, from 1973Di02 from 10190-14090.

E(level) ^{†@}	$\mathrm{J}^{\pi\ddagger}$	$T_{1/2}^{\#}$	$S(p,\gamma) (eV)^b$	Comments
0	0+			
3352.62 9	0+			
3736 69 5	3_&			
3904 38 4	2+&			
1401 AA A	5_&			
5211 7 3	0±			
5248 81 5	2+			
5278 81 6	4+			
5613.53.3	4-			
5629.43 8	2+			
5902.63 8	1-			
6025.47 5	2-			
6029.71 6	3+			
6285.15 4	3-			
6507.84 13	4+			
6542.78 9	4+			
6582.54 15	3-			
6750.41 7	2-			
6908.70 8	2+			
6931.29 6 ^a	3-	1.4 ps 6		
6950.49 7	1-			
7113.0	1-			γ branching ratios not available.
7113.73 6	4-	76 fs 28		
7239.07 8 ^a	(3-,4,5-)			
7277.82 8 ^a	(2,3)+			
7300.74 20	0+			
7446.23 6 ^a	(3,4)+			
7466.37 8	2+	18 fs <i>14</i>		
7481				E(level): from 19/1Da08 only.
7532.26 5	2-	0.22 ps 7		
7561.18 7	3+			
7623.11 8	(2-,3,4+)			
7658.23 5	4-			
/0/0.0	0+ 2			
7694.15 25	3-			
7701.8 4	(2, 4, 5)			
7709.4	(3,4,3)-			
7028 42 10	2+			
7920.42 10	4 +			E(level): from 1071De08 only
17/0				E(10001). $10111 19/11 Daug Olliy.$
			Continued on n	ext page (footnotes at end of table)

⁴⁰Ca Levels (continued)

E(level) ^{†@}	$J^{\pi\ddagger}$	T _{1/2} #	$S(p,\gamma) (eV)^b$	Comments
8091 61 17	2+			
8134 76 10	(2-34+)			30% v-branching undetermined
8187 69 13	(2,3,11)			5676 f brunching undetermined.
8323.16.8	(1 - 2 +)	83 fs 28		11% 2 y-branching undetermined
8338.0.3	(1,=)	00 10 20		15% 8 γ -branching undetermined
8373.94 15	4+			$30\% 20 \gamma$ -branching undetermined.
8424.81 11	2-			
8439.0.5	0+			
8484.02 13	0+			
8578.80 9	2+			
8678.29 10	4+	42 fs 35		22% 16 γ -branching undetermined.
8748.20 9	2+			, .
8764.18 6	3-			$\approx 9\% \gamma$ -branching undetermined.
8934.81 7	2+		0.09 4	E(p)(lab)=622.23 12.
8978				E(level): from 1971Da08 only.
8994.50 11	(1-,2+)		0.15 6	$E(p)(lab) = 683.45 \ 15.$
9031.9 <i>3</i>	4-			$\Gamma_p = 1.5 \Gamma_{\gamma}$ from intensity balance.
9091.70 6	3-		0.28 11	$E(p)(lab) = 783.23 \ 11.$
9135.66 5	(3)-		0.6 2	$E(p)(lab) = 822.27 \ 11.$
9209.77 5	(1,2,3)-		0.39 16	E(p)(lab)=904.29 11.
9226.69 5	(1-,2,3-)		0.28 11	S: for 9226.69+9227.43.
				E(p)(lab)=921.66 11.
9227.43 7	(1,2+)		0.28 11	S: for 9226.69+9227.43.
				E(p)(lab)=922.42 12.
				5% 2 γ -branching undetermined.
9362.54 6	3-		0.43 17	14% 3 γ -branching undetermined.
				$E(p)(lab)=1061.01 \ II.$
9377.8 2			0.24 10	E(p)(lab)=1076.70 18.
9388.20 19	2+		0.26 10	E(p)(lab)=1087.35 17.
9395.7 <i>3</i>	_		0.09 4	E(p)(lab)=1095.0 3.
9404.85 19	2-		0.36 14	E(p)(lab)=1104.43 17.
9406.4 6			0.40 10	E(p)(lab)=1106.0 6.
9412.4 2			0.18 7	E(p)(lab)=1112.2 2.
9418.8 2	3-		0.6 2	E(p)(lab)=1118.76 18.
9429.11 5	(3,4)-		0.2.2	E(p)(lab)=1129.32 11.
9432.46 18	1-		2.6 11	E(p)(lab)=1132.8 4.
9453.95 5	3-		0.8 3	E(p)(lab)=1154.85 11.
9500.0 15			0.42 17	E(p)(1ab)=1202.0 15.
9536.35 10			1.1 4	E(p)(1ab)=1239.33 13.
9537.9 5	2		$0.24 \ 10$	E(p)(1ab)=1240.9 S. E(-)(1-b)=1207.7 4
9005.04	3- 1		2.4 10	E(p)(1ab)=1307.74.
9004.0 4	1-		52	E(p)(1ab)=1.509.74.
9032.8 11			~0.2	S. 1961CH04. Not observed by 1990K107 ($S < 0.15$). E(n)(lab)=1227.2.10
0640.80.7	2		5.2	$E(p)(1ab) = 1337.2 \ 10.$ $E(a)(1ab) = 1246.58 \ 15$
9040.89 /	2-		52	E(p)(1ab) = 1340.38 I.S. $I_{\pi_{1}} = 2(+)$ from 1062L of 0
0655 6 0			0.22.0	$F(\mathbf{p})(l_{0}\mathbf{b}) = 1361.7.0$
966232			0.22 9	E(p)(lab) = 1361.7 9. E(p)(lab) = 1368.6.2
9668 71 8	3_		2.02	E(p)(lab) = 1306.0 2. E(p)(lab) = 1375.12.12
9779 49 7	3		2.4 10	E(p)(1ab) = 1373.12 12. E(p)(1ab) = 1488.53 12
9785 3 2	(1.2+)		104	E(p)(1ab) = 1494.68.19 E(n)(1ab) = 1494.68.19
9802.2.7	(1,21)		0.37.15	E(p)(lab) = 1494.00 19. E(p)(lab) = 1512.2.7
9807.3.11			≈ 0.2	E(p)(1ab) = 1512.27
2007.5 11			.~0.2	From $1981Ch04$ Not observed by 1990Ki07 (s<0.2)
9811.1.2			0.27 11	E(n)(lab)=1521.18.78
9829 54 16			0.8 3	E(p)(lab)=1540, 11, 14
9835.08 19			0.6.3	E(p)(lab)=1545.79 17.
9854.54 17			1.1 4	E(p)(lab)=1565.76 15.
9859.7 3			0.5 2	E(p)(lab)=1571.1 3.
-				54 / S - /

$E(level)^{\dagger@}$ $I^{\pi\ddagger}$ T_{1/2}# $S(p,\gamma) (eV)^b$ Comments 9865.15 11 1 62 E(p)(lab)=1576.74 15. 3.1 12 E(p)(lab)=1580.9 4. 9869.3 4 1 +9898.6 3 0.6 2 E(p)(lab)=1611.0 3. 0.43 17 E(p)(lab)=1634.33 18. 9921.4 2 0.13 5 9939.8 2 E(p)(lab)=1653.2 2. 9954.00 9 1.6 6 E(p)(lab)=1667.80 13. 4 +5% 2 γ-branching undetermined. 9977.20 17 1.1 4 E(p)(lab)=1691.60 15. E(p)(lab)=1708.6 15. 9993.7 15 0.5 2 10040.54 9 0.5 2 E(p)(lab)=1756.58 13. (2-,3-) E(p)(lab)=1761.9 5. 10045.7 5 10049.38 7 4.5 19 E(p)(lab)=1765.58 12. 4-0.17 7 E(p)(lab)=1774.5 2. 10058.0 3 10080.7 2 0.9 4 E(p)(lab)=1797.78 18. E(p)(lab)=1849.07 17. 10130.70 19 1.4 6 10136.7 16 ≈ 0.5 E(p)(lab)=1854.1 15. From 1981Ch04. Not observed by 1990Ki07 (s<0.3). 10199.2 4 E(p)(lab)=1919.3 4. 0.6 2 10205.1 8 0.23 9 E(p)(lab)=1925.4 8. 10210.6 2 1.4 6 E(p)(lab)=1931.0 2. 10232.8 7 1.3 5 E(p)(lab)=1953.8 7. E(p)(lab)=1984.32 14. 10262.53 10 3-1.3 5 0.19 8 E(p)(lab)=1989.6 5. 10267.7 5 10274.8 3 0.28 11 E(p)(lab)=1996.9 3. 10277.9 2 0.7 3 E(p)(lab)=2000.1 2. E(p)(lab)=2007.4 3. 10285.0 3 0.7 3 10318.8 4 14.3 10 E(p)(lab)=2042.0 4. 1 +Jπ: 1963Le08. S: from 1981Ch04, used for calibration. 10332.6 15 0.8 3 E(p)(lab)=2056.2 15. 0.6 2 E(p)(lab)=2082.9 15. 10358.6 15 10361.5 15 2.1 8 E(p)(lab)=2085.9 15. 10375.5 15 1.2 5 E(p)(lab)=2100.2 15. E(p)(lab)=2108.83 13. 10383.90 16 2.08 5.8 19 E(p)(lab)=2140.80 11. 10415.06 6 3 2.5% 18 γ-branching undetermined. $E(p)(lab)=2146.6 \ 10.$ 10420.7 10 0.8 3 10430.58 19 3.1 10 E(p)(lab)=2156.72 17. 10441.4 6 2.5 8 E(p)(lab)=2167.8 6. E(p)(lab)=2170.4 2. 10443.9 2 1.7 5 10470.0 15 0.6 2 E(p)(lab)=2197.2 15. E(p)(lab)=2206.1 15. 10478.7 15 1.0 4 E(p)(lab)=2231.1 15. 10503.1 15 $1.1 \ 4$ 10514.8 15 2.5 10 E(p)(lab)=2243.1 15. 10527.8 15 3.7 15 E(p)(lab)=2256.5 15. E(p)(lab)=2269.0 15. 10540.0 15 1.0 3 10552.2 15 1.8 7 E(p)(lab)=2281.5 15. 10632.7 2 2.1 8 E(p)(lab)=2364.04 19. 10639.07 7 (3-,4,5-)E(p)(lab)=2370.61 12. 11 4 10646.4 4 E(p)(lab)=2378.1 4. 1.5 6 10653.23 16 83 E(p)(lab)=2385.14 14. 10670.4 3 18 7 E(p)(lab)=2402.8 3. E(p)(lab)=2406.13 15. 10673.69 17 52 10677 3 0.7 2 E(p)(lab)=2408 3.From 1981Ch04. Not observed by 1990Ki07 (s<0.6). 10691.0 3 3.4 14 E(p)(lab)=2423.9 3. 10699.50 10 3 $10 \ 4$ E(p)(lab)=2432.61 14. 9.6% 18 γ-branching undetermined. 10720.8 3 2.1 7 E(p)(lab)=2454.5 3.

⁴⁰Ca Levels (continued)

E(level) ^{†@}	$J^{\pi \ddagger}$	$T_{1/2}^{\#}$	$S(p,\gamma) (eV)^b$	Comments
10737.7 3	1-		4.6 18	E(p)(lab)=2471.8 3.
				24% 3 γ -branching undetermined.
10747.8 4	4+		15.6	E(p)(lab)=2482.2 4.
10753.85 18			4.5 18	E(p)(lab)=2488.37 16.
10770.2 3	(1+)		73	E(p)(lab)=2505.1 3.
1077633			16.6	F(p)(lab)=2511 4 3
10780.9.3			6.2	E(p)(lab)=2511.4.5 E(n)(lab)=2516.1.3
10787 7 3			3012	F(p)(lab)=25761752 F(n)(lab)=25731.3
10800 0 10			114	E(p)(1ab)=2535.7.5
10813 7 5			12.0.5	F(p)(lab) = 2535.776.
10830.0.6			2710	E(p)(lab)=2566.5.6
10848 5 4			4417	E(p)(lab)=2585554
10868.8.4			5 2 19	E(p)(lab)=2606.3.4
10910.0.4			73	E(p)(lab)=2648.6.4
10/10.0 7			15	γ decay from 1971Da08.
10921.1 4			94	γ decay from 1971Da08, 40% γ -branching uncertain.
				E(p)(lab)=2659.9 4.
10934.4 5			52	E(p)(lab)=2673.65.
10951.5 4			16 4	E(p)(lab)=2691.1 4.
10956.0 4	(3-,4+,5-)		4.0 16	E(p)(lab)=2695.8 4.
				γ decay and J π =(3-) from 1971Da08.
10976.3 5			9 <i>3</i>	E(p)(lab)=2716.65.
10988.0 4	2-		8 <i>3</i>	E(p)(lab)=2728.6 4.
				γ decay from 1971Da08.
10994.7 <i>4</i>	(1-)		11 4	E(p)(lab)=2735.5 4.
				γ decay from 1971Da08; branching ratios not available.
11002.4 5			2.9 12	E(p)(lab)=2743.45.
11011.0 4	3-		14 5	E(p)(lab)=2752.2 4.
				17% 3 γ -branching undetermined.
11023.8 5			62	E(p)(lab)=2765.3 5.
11042.0 5	2+		62	E(p)(lab)=2784.0 5.
110-00				γ decay from 1971Da08.
110/0.0 6	(3)		31 12	E(p)(lab)=2813.3 4.
11090				γ decay and J from 19/1Dau8; (1-:4+) in Adopted Levels.
11080				E(p)(1ab) = 2021. E(level): level from 1071 De08
1111715			5.2	E(10001). $E(101111771Da00)$. E(n)(10h) = 2861.0.5
11117.1 5			52	E(p)(lab) = 2801.0.5. E(p)(lab) = 2871.4.5
11127.2 J			20.8	$E(p)(lab) = 2071.4 \ J.$
11105.5 4 12028 2f			2.0 8	E(p)(1ab) = 2910.5 4. E(p)(1ab) = 2904.2
12038 3				E(p)(100)=3804 3.
				$I_p(10 5552)=0.07$ KeV 5. Pasapaga strengths: 0.0 aV 4 to g s = 1.0 aV 5 (first 2) to g s) 2.2 aV
				Resonance strengths. 0.9 eV 4 to g.s., 1.0 eV 5 (first 2+ to g.s.), 2.5 eV 8 (first 3 to g.s.) (1085Se16). Also (p, p') to first 2+
12049 3f				$F(p)(l_{2}b)=3815$ 3
12049 5				$\Gamma_{\rm c}(to~3352)=0.66 \text{ keV}/3$
				Resonance strengths: $0.7 \text{ eV} 3$ to $g_{\text{S}} = 1.2 \text{ eV} 6$ (first 2+ to $g_{\text{S}} = 0.5 \text{ eV}$
				2 (first 3- to g.s.) (1985Se16). Also (p,p') to first 2+.
12068 <i>3^f</i>				E(p)(lab)=3834 3.
				Resonance strengths: 9 eV 3 to g.s.
12074 <i>3^f</i>				E(p)(lab)=3841 3.
				$\Gamma_n(\text{to } 3352) = 0.030 \text{ keV } 17$
				Resonance strengths: 0.7 eV 3 to g.s., 1.5 eV 6 (first 2+ to g.s.), 1.1 eV
				5 (first 3- to g.s.) (1985Se16). Also (p,p') to first 2+.
12099^{d}			5.1^{e}	E(p)(lab)=3863 10.
12111 ^d			3.5^{e}	$E(p)(lab)=3875 \ 10.$
12204^{d}			2.5^{e}	$E(p)(lab)=3970 \ 10.$
12334^{d}			3.4 ^e	E(p)(lab)=4104 10.
			5.1	~(r)() (10) 10)

⁴⁰Ca Levels (continued)

E(level) ^{†@}	$J^{\pi \ddagger}$	T _{1/2} #	$S(p,\gamma) (eV)^b$	Comments
12423 ^d			2.3 ^e	E(p)(lab)=4195 10.
12604 ^d			5.9 ^e	$E(p)(lab) = 4380 \ 10.$
12647 ^d				$E(p)(lab)=4425 \ 10.$
12668 ^d			14.5 ^e	$E(p)(lab)=4446 \ 10.$
12688 ^d			4.4^{e}	$E(p)(lab)=4467 \ 10.$
12875 ^d			6.1 ^e	$E(p)(lab)=4658 \ 10.$
12980 ^d			4.2^{e}	$E(p)(lab)=4766 \ 10.$
12996 ^d				$E(p)(lab)=4783 \ 10.$
13086 ^d			2.1 ^e	$E(p)(lab)=4875 \ 10.$
13113 ^d			18.4 ^e	$E(p)(lab)=4903 \ 10.$
13194 ^d			13.9 ^e	$E(p)(lab) = 4986 \ 10.$
13203 ^d			6.1 ^e	$E(p)(lab)=4995 \ 10.$
13289 ^d			8.1 ^e	$E(p)(lab)=5083 \ 10.$
13822 ^d			2.9 ^e	$E(p)(lab)=5630 \ 10.$
13913 ^d			56.0 ^e	$E(p)(lab) = 5723 \ 10.$
13993 ^d			112.0 ^e	$E(p)(lab) = 5805 \ 10.$
18260 5 ^c				E(p)(lab)=10190.
18680 5 ^c				E(p)(lab)=10620.
19070 5 ^c				E(p)(lab)=11020.
19450 5 ^c				E(p)(lab)=11410.
19850 5°				E(p)(lab) = 11820.
20130.5°				E(p)(1ab)=12410. E(p)(1ab)=12420
$20450 5^{\circ}$				E(p)(1ab) = 12420. E(n)(1ab) = 12640
$20050 5^{c}$				E(p)(lab)=12940.
21490 5 ^c				E(p)(lab)=13500.
21690 5 ^c				E(p)(lab) = 13710.
22060 5 ^c				E(p)(lab) = 14090.

⁴⁰Ca Levels (continued)

[†] Weighted average from 1990Ki07 and 1988Sc23 for levels below 8200; from 1990Ki07 for levels above 8200, except when stated otherwise. [‡] From Adopted Levels unless otherwise stated. [#] From DSAM (1990Ki07). [@] From 1990Ki07 and 1988Sc23. [&] Spin from $p\gamma(\theta)$ (1963Le08). ^a Level not reported by 1988Sc23.

^b From 1990Ki07, unless otherwise stated. ^c From 1973Di02; E(p)=6.5-17.5 MeV (Δ (E(p)) \approx 5 keV).

^{*d*} From 1968Ba22. ^{*e*} (2J+1) $\Gamma_p\Gamma_0/\Gamma$ (eV) from 1968Ba22, using Γ =26 eV for E(p)=2050 resonance (2042.0 resonance listed here).

^f From 1985Se16.

γ ⁽⁴⁰ Ca)										
\mathbf{E}_{i}^{level}	\mathbf{J}_i^{π}	\mathbf{E}_{f}^{level}	$\mathbf{J}_f^{m{\pi}}$	${\rm E}_{\gamma}^{\dagger}$	I_{γ}^{\ddagger}	Mult.	δ			
3352.62	0+	0	0+	3352.5						
3736.69	3-	3352.62	0+	384.1	< 0.04					
		0	0+	3736.5	100					
3904.38	2+	3736.69	3-	167.7	< 0.9					
		3352.62	0+	551.8	< 0.1					
		0	0+	3904.2	100					
4491.44	5-	3736.69	3-	754.7	100	$Q(+O)^a$	$+0.05 \ 3^{a}$			
		3352.62	0+	1138.8	< 0.9					
		0	0+	4491.2	<1.6					
5211.7	0+	4491.44	5-	720.2	<1.3					
		3904.38	2+	1307.3	100					

E ^{level}	\mathbf{J}_i^{π}	\mathbf{E}_{f}^{level}	J_f^π	E_{γ}^{\dagger}	Iγ [‡]	Mult.	δ
······		3736.69	3-	1475.0	<1.3		
5248.81	2+	4491.44	5-	757.4	<1.1		
		3904.38	2+	1344.4	15.1 9		
		3736.69	3-	1512.1	< 0.6		
		3352.62	0+	1896.1	5.1 6		
		0	0+	5248.4	79.8 <i>12</i>		
5278.81	4+	4491.44	5-	787.4	1.0 8		
		3904.38	2+	1374.4	99.0 15		
		3/36.69	3-	1542.1	<0.9		
5612 52	4	U 5079.91	0+	5278.4	<1.8		
5015.55	4-	52/8.81	$^{++}_{2\perp}$	364.7	<1		
		5211.7	2+ 0+	401.8	<0		
		4491 44	5-	1122.1	29 5 20		
		3904.38	2+	1709.1	<2		
		3736.69	3-	1876.8	70.5 20		
		3352.62	0+	2260.8	<3		
5629.43	2+	5278.81	4+	350.6	<1.1		
		5248.81	2+	380.6	<1.0		
		5211.7	0+	417.7	<1.6		
		4491.44	5-	1138.0	< 0.6		
		3904.38	2+	1725.0	< 0.8		
		3736.69	3-	1892.7	<1.1		
		3352.62	0+	2276.7	12.3 9		
5000 60	1	0	0+	5629.0	87.79		
5902.63	1-	5613.53	4-	289.1	<0.6		
		52/8.81	4+	023.8	< 0.5		
		5246.61	2+ 0+	600.0	< 0.5		
		1491 AA	0+ 5-	1411.2	< 0.3		
		3904 38	3- 2+	1998 2	< 0.7		
		3736.69	3-	2165.9	<9		
		3352.62	0+	2549.9	<5		
		0	0+	5902.2	100		
6025.47	2-	5902.63	1-	122.8	<3		
		5629.43	2+	396.0	< 0.4		
		5613.53	4-	411.9	< 0.4		
		5278.81	4+	746.7	< 0.4		
		5248.81	2+	776.7	< 0.4		
		5211.7	0+	813.8	<0.4		
		4491.44	5-	1534.0	< 0.5		
		3904.38	2+	2121.0	18.5 22		
		3/30.09	3- 0	2288.7	81.5 22		
		3352.02	0+	2072.8	< 0.7		
6020 71	3.	5902.63	0+ 1-	127.1	<1.0		
0027.71	J+	5629.43	2^{+}	400.3	<7		
		5613 53	4-	416.2	<2		
		5278.81	4+	750.9	<1		
		5248.81	2+	780.9	20 3		
		5211.7	0+	818.0	<1		
		4491.44	5-	1538.2	<6		
		3904.38	2+	2125.3	80 <i>3</i>		
		3736.69	3-	2293.0	<6		
		3352.62	0+	2677.0	<5		
	2	0	0+	6029.2	<4		
6285.15	3-	6029.71	3+	255.4	< 0.3		
		6025.47	2-	259.7	<0.3		
		5902.63	1-	382.5	< 0.3		

Flevel	īπ	Flevel	<u>γ(Ca)</u> 1π	Eu†	L.‡	Mult	δ
L _i	J _i	$\underline{\mathbf{L}_{f}}$	3 <i>f</i>	μγ	17	Iviuit.	0
		5629.43	2+	655.7	<0.6		
		5613.53	4-	671.6	0.9 2		
		52/8.81	4+	1006.3	<0.4		
		5248.81	2+	1036.3	<0.3		
		5211.7	0+	10/3.4	< 0.3		
		4491.44	5-	1793.7	72.0 8		
		3904.38	2+	2380.7	19.7 5		
		3/30.69	3-	2548.4	3.2.4		
		3352.62	0+	2932.4	<0.7		
6507.84	4.	5002.63	0+ 1	605.2	4.2 5		
0307.84	4+	5620.43	1-	003.2 878 4	< 3		
		5613 53	2+ 1	804 3	<2		
		5278.81	4-	1220.0	<2		
		5248.81	$^{++}_{2+}$	1229.0	15 3		
		52117	2+ 0+	1295.0	<3		
		4491 44	5-	2016.4	<2		
		3904 38	$\frac{3}{2+}$	2603.4	85 3		
		3736.69	3-	2771.1	< 3		
		3352.62	0+	3155.1	< 3		
		0	0+	6507.3	<9		
6542.78	4+	6029.71	3+	513.1	<5		
		6025.47	2-	517.3	<2		
		5902.63	1-	640.1	<1		
		5629.43	2+	913.3	19 2		
		5613.53	4-	929.2	<2		
		5278.81	4+	1264.0	8 2		
		5248.81	2+	1294.0	14 2		
		4491.44	5-	2051.3	<2		
		3904.38	2+	2638.3	59 2		
		3736.69	3-	2806.0	<3		
6500 54	2	0	0+	6542.2	<4		
6582.54	3-	6029.71	3+	552.8	<0.5		
		6025.47	2- 1	557.1	< 0.6		
		5902.05	1-	0/9.9	< 0.5		
		5612 52	2+ 4	955.1	< 0.3		
		5278.81	4- 4+	1303.7	<0.9		
		5248.81	2^{+1}	1333.7	< 0.9		
		52117	0^{2+}	1370.8	< 0.8		
		4491.44	5-	2091.0	3 2		
		3904.38	2+	2678.1	15.8 11		
		3736.69	3-	2845.7	65.1 13		
		3352.62	0+	3229.8	<3		
		0	0+	6582.0	<2		
6750.41	2-	6029.71	3+	720.7	<3		
		6025.47	2-	724.9	<2		
		5902.63	1-	847.8	<3		
		5629.43	2+	1121.0	<7		
		5613.53	4-	1136.9	$<\!2$		
		5278.81	4+	1471.6	<3		
		5248.81	2+	1501.6	<8		
		5211.7	0+	1538.7	<3		
		4491.44	5-	2258.9	<3		
		3904.38	2+	2845.9	<10		
		3/36.69	<u>3</u> -	3013.6	100		
		3352.62	0+	5597.6	<8		
6009 70	2	0	0+	0/49.8 870.0	<ð <0.2		
0908.70	∠+	0029.71	3+	0/9.0	<0.5		

\mathbf{E}_{i}^{level}	\mathbf{J}_i^{π}	\mathbf{E}_{f}^{level}	J_f^{π}	$E_{\gamma}{}^{\dagger}$	I_{γ}^{\ddagger}	Mult.	δ
		6025.47	2-	883.2	< 0.3		
		5902.63	1-	1006.1	< 0.3		
		5629.43	2+	1279.3	< 0.6		
		5613.53	4-	1295.2	< 0.4		
		5278.81	4+	1629.9	< 0.9		
		5248.81	2+	1659.9	< 0.4		
		5211.7	0+	1697.0	< 0.4		
		4491.44	5-	2417.2	$<\!0.6$		
		3904.38	2+	3004.2	< 0.7		
		3736.69	3-	3171.9	< 0.9		
		3352.62	0+	3555.9	<1.2		
		0	0+	6908.1	100		
6931.29	3-	6025.47	2-	905.8	< 0.2		
		5902.63	1-	1028.7	< 0.2		
		5629.43	2+	1301.8	5.8 <i>3</i>		
		5613.53	4-	1317.7	2.0 3		
		5278.81	4+	1652.4	< 0.3		
		5248.81	2+	1682.4	6.1 <i>3</i>		
		5211.7	0+	1719.6	< 0.2		
		4491.44	5-	2439.8	1.4 3		
		3904.38	2+	3026.8	2.0 5		
		3736.69	3-	3194.5	82.7 7		
		3352.62	0+	3578.5	< 0.4		
		0	0+	6930.7	<3		
5950.49	1-	6029.71	3+	920.8	<2		
		6025.47	2-	925.0	<2		
		5902.63	1-	1047.9	<2		
		5629.43	2+	1321.0	<2		
		5613.53	4-	1336.9	<8		
		5278.81	4+	16/1.6	<5		
		5248.81	2+	1701.6	<2		
		5211.7	0+	1/38.8	<2		
		4491.44	5-	2459.0	<6		
		3904.38	2+	3040.0	<4		
		3/30.09	3- 0-	3213.7	< 5		
		3352.62	0+	3397.7	<0		
7112.0	1	0	0+	0949.8	100		
/115.0	1-	3904.30	2+	5206.5 7112.2			
7113 73	4	6020 71	0+	1084.0	<03		
/113./3	4-	6025.71	3⊤ 2	1084.0	< 0.3		
		5902.47	2- 1-	1211 1	<05		
		5629.43	1- 2+	1484 3	< 0.5		
		5613 53	4-	1500.2	687		
		5278.81	4+	1834.9	1.7.3		
		5248.81	2+	1864.9	< 0.6		
		5211.7	$\tilde{0}$ +	1902.0	< 0.4		
		4491.44	5-	2622.2	27.0.13		
		3904.38	2+	3209.2	< 0.8		
		3736.69	3-	3376.9	66.2.9		
		3352.62	0+	3760.9	<1.0		
		0	0+	7113.1	<1.2		
7239.07	(3-,4.5-)	3736.69	3-	3502.2			
7277.82	(2,3)+	6029.71	3+	1248.1	<3		
	× 7-7.	6025.47	2-	1252.3	<6		
			2	1648 4	< 5		
		5629.43	2+	1040.4	~~		
		5629.43 5613.53	2+ 4-	1664.3	<4		
		5629.43 5613.53 5278.81	2+ 4- 4+	1664.3 1999.0	<4 <10		

\mathbf{E}_{i}^{level}	\mathbf{J}_i^{π}	\mathbf{E}_{f}^{level}	J_f^π	${\rm E}_{\gamma}^{\dagger}$	I_{γ}^{\ddagger}	Mult.	δ
-	-	5211.7	<u> </u>	2066.1	<u>,</u> _5		
		J211.7 AAQ1 AA	0+ 5-	2000.1	<7		
		3736.69	3-	3541.0	100		
		3352.62	0+	3925.0	< 5		
		0	0+	7277.1	< 3		
7300 74	0+	6029 71	3+	1271.0	<12		
	01	6025.47	2-	1275.3	<1.2		
		5902.63	1-	1398.1	<6		
		5629.43	2+	1671.3	4.0 15		
		5613.53	4-	1687.2	<1.0		
		5278.81	4+	2021.9	<1.3		
		5248.81	2+	2051.9	96.0 15		
		4491.44	5-	2809.2	<6		
		3904.38	2+	3396.2	<5		
		3736.69	3-	3563.9	<2		
7446.23	(3,4)+	6029.71	3+	1416.5	< 0.4		
		6025.47	2-	1420.7	< 0.4		
		5902.63	1-	1543.6	< 0.4		
		5629.43	2+	1816.8	12.8 7		
		5613.53	4-	1832.7	20.7 8		
		5278.81	4+	2167.4	23.8 12		
		5248.81	2+	2197.4	42.7 11		
		5211.7	0+	2234.5	<0.4		
		4491.44	5-	2954.7	<1.4		
		3904.38	2+	3541.7	<2		
		3/36.69	3-	3709.4	<0.9		
		3352.62	0+	4093.4	< 0.7		
7166 27	2	0	0+	1445.5	< 0.8		
7400.57	2+	6025.71	3+ 2	1430.0	< 0.4		
		5902.63	2- 1-	1440.9	< 0.4		
		5629.43	2^{-1-}	1836.9	<0.4		
		5613 53	4-	1852.8	<11		
		5278.81	4+	2187.5	<0.6		
		5248.81	2+	2217.5	13.2.17		
		5211.7	0+	2254.6	< 0.6		
		4491.44	5-	2974.8	<1.0		
		3904.38	2+	3561.8	19.9 <i>14</i>		
		3736.69	3-	3729.5	<1.7		
		3352.62	0+	4113.5	11.6 10		
		0	0+	7465.6	55.3 19		
7481		0	0+	7480			
7532.26	2-	6285.15	3-	1247.1	9.8 9		
		6029.71	3+	1502.5	<1.4		
		6025.47	2-	1506.8	4.8 4		
		5902.63	1-	1629.6	3.4 10		
		5629.43	2+	1902.8	<0.6		
		5613.53	4-	1918.7	24.2 14		
		52/8.81	4+	2253.4	<1.4		
		5248.81	2+ 0+	2285.4	< 5		
		JZ11./ AA01 AA	0+ 5-	2520.5 3040 7	< 0.7		
		300/ 32		3627 7	15 3 11		
		3736 60	∠⊤ 3-	3795 4	42 5 16		
		3352.62	0+	4179.4	<09		
		0	0+	7531.5	<2		
7561.18	3+	6029.71	3+	1531.4	28 3		
	-	6025.47	2-	1535.7	<1.8		
		5902.63	1-	1658.5	< 0.6		

			<u>n</u> ca)	(continued)			
\mathbf{E}_{i}^{level}	\mathbf{J}_i^{π}	\mathbf{E}_{f}^{level}	${ m J}_f^\pi$	E_{γ}^{\dagger}	Iγ [‡]	Mult.	δ
		5629.43	2+	1931.7	< 0.8		
		5613.53	4-	1947.6	< 0.9		
		5278.81	4+	2282.3	< 0.9		
		5248.81	2+	2312.3	63 8		
		5211.7	0+	2349.4	<1.5		
		4491.44	5-	3069.6	< 0.8		
		3904.38	2+	3656.6	<4		
		3736.69	3-	3824.3	92		
		3352.62	0+	4208.3	< 0.6		
		0	0+	7560.4	<1.5		
7623.11	(2-,3,4+)	6029.71	3+	1593.4	< 0.5		
		6025.47	2-	1597.6	< 0.5		
		5902.63	1-	1720.4	< 0.7		
		5629.43	2+	1993.6	35.9 10		
		5613.53	4-	2009.5	32.2 10		
		5278.81	4+	2344.2	< 0.9		
		5248.81	2+	2374.2	11.3 7		
		5211.7	0+	2411.3	< 0.5		
		4491.44	5-	3131.5	< 0.7		
		3904.38	2+	3718.5	<1.0		
		3736.69	3-	3886.2	20.6 7		
		3352.62	0+	4270.3	< 0.9		
		0	0 +	7622.3	< 0.5		
7658.23	4-	6285.15	3-	1373.1	13 2		
		5613.53	4-	2044.6	39 <i>3</i>		
		5278.81	4+	2379.3	<2		
		5211.7	0+	2446.5	<2		
		4491.44	5-	3166.7	22 3		
		3904.38	2+	3753.7	<4		
		3736.69	3-	3921.3	26 <i>3</i>		
		3352.62	0+	4305.4	<4		
		0	0 +	7657.4	< 0.3		
7676.6	6+	5278.81	4+	2397.7	100		
7694.15	3-	6029.71	3+	1664.4	<1.2		
		6025.47	2-	1668.6	<1.3		
		5902.63	1-	1791.5	<8		
		5629.43	2+	2064.7	<1.2		
		5613.53	4-	2080.6	9.2 12		
		5278.81	4+	2415.3	<1.5		
		5248.81	2+	2445.3	<1.5		
		5211.7	0+	2482.4	<1.7		
		4491.44	5-	3202.6	<2		
		3904.38	2+	3789.6	<2		
		3736.69	3-	3957.3	90.8 12		
		3352.62	0+	4341.3	<1.9		
		0	0 +	7693.4	<3		
7701.8	0+	6029.71	3+	1672.1	<5		
		6025.47	2-	1676.3	<5		
		3904.38	2+	3797.2	100		
7769.4	(3,4,5)-	5613.53	4-	2155.8	34 6		
	x- , , - ,	3736.69	3-	4032.5	66 6		
7872.18	2+	5613.53	4-	2258.6	<6		
		5278.81	4+	2593.3	<5		
		5248.81	2+	2623.3	<11		
		3904.38	2+	3967.6	<5		
		0	0+	7871 4	100 ^b		
7928 42	4+	6029 71	3+	1898 7	<4		
, 720.72	-11	6025.71	2-	1902.9	<4		
		0020.47	-	1,04.7			

			<u>/(Ca) (</u>	continueu)			
\mathbf{E}_{i}^{level}	$\mathbf{J}_i^{\boldsymbol{\pi}}$	\mathbf{E}_{f}^{level}	$\mathbf{J}_f^{\boldsymbol{\pi}}$	${\rm E}_{\gamma}^{\dagger}$	I_{γ}^{\ddagger}	Mult.	δ
		5902.63	1-	2025 7	< 3		
		5629.43	2^{+}	2298.9	<4		
		5613.53	4-	2314.8	50.9		
		5278.81	4+	2649 5	< 3		
		5248.81	2+	2679.5	< 6		
		5211.7	0+	2716.6	< 3		
		4491 44	5-	3436.8	50 9		
		3904 38	$\frac{3^{-}}{2^{+}}$	4023.8	<5		
		3736.69	3-	4191 5	<7		
		3352.62	0+	4575 5	<4		
		0	0+	7927.6	< 6		
7976		6542.78	4+	1433	<0		
8091 61	2+	0	0+	8090 7	100		
8134.76	(2 - 3.4 +)	5629.43	2+	2505.3	28.3		
0154.70	(2,3,41)	5613 53	4-	2521.2	83		
		4491 44	5-	3643.1	< 5		
		3904 38	$\frac{3}{2+}$	4230 1	34 10		
8187 69		3736.69	3-	4450.7	100		
8323.16	(1 - 2 +)	6750.41	2-	1572.7	746		
0325.10	(1,2)	6285.15	3-	2038.0	133		
		6025.15	2-	2030.0	15.6.10		
		5902.47	1-	2420.5	11.0 10		
		5629.43	2^{+}	2693.6	< 0.4		
		5613 53	4-	2709.5	<0.4		
		5278.81	4+	3044.2	< 0.3		
		5248.81	2+	3074.2	275		
		52117	0+	3111.3	<03		
		4491 44	5-	3831.5	< 0.5		
		3904 38	$\frac{3^{-}}{2^{+}}$	4418 5	<13		
		3736.69	3-	4586.2	59 4 19		
		3352.62	0+	4970.2	<03		
		0	0+	8322.2	207		
8338.0		6542.78	4+	1795.2	60.6		
000010		6507.84	4+	1830.1	25.6		
8373 94	4+	3904 38	2+	4469 3	70 20		
8424.81	2-	6029.71	3+	2395.0	<3		
	_	6025.47	2-	2399.3	13.3		
		5902.63	1-	2522.1	17 3		
		5629.43	2+	2795.3	<6		
		5613.53	4-	2811.2	<3		
		5278.81	4+	3145.9	<4		
		5248.81	2+	3175.9	<4		
		5211.7	0+	3213.0	<4		
		4491.44	5-	3933.2	<4		
		3904.38	2+	4520.2	<4		
		3736.69	3-	4687.8	70 4		
		3352.62	0+	5071.9	<6		
		0	0+	8423.9	<1.5		
8439.0	0+	5629.43	2+	2809.5	> 80		
8484.02	0+	5902.63	1-	2581.3	37 7		
		3736.69	3-	4747.0	63 7		
8578.80	2+	6029.71	3+	2549.0	<4		
		6025.47	2-	2553.2	<4		
		5629.43	2+	2949.3	<4		
		5613.53	4-	2965.2	<4		
		5278.81	4+	3299.8	<5		
		5248.81	2+	3329.8	<5		
		5211.7	0+	3367.0	<5		
		4491.44	5-	4087.1	<4		

			<u> </u>	continueu)			
\mathbf{E}_{i}^{level}	J_i^π	\mathbf{E}_{f}^{level}	\mathbf{J}_f^{π}	$E_{\gamma}{}^{\dagger}$	I_{γ}^{\ddagger}	Mult.	δ
		3904.38	2+	4674.1	<4		-
		3736.69	3-	4841.8	<6		
		3352.62	0+	5225.8	<7		
		0	0+	8577.8	100		
8678.29	4+	6285.15	3-	2393.1	13 5		
		3736.69	3-	4941.3	65 15		
8748.20	2+	0	0+	8747.2	>80		
8764.18	3-	6029.71	3+	2734.4	16 6		
		5629.43	2+	3134.6	19 7		
		5278.81	4+	3485.2	34 10		
		3904.38	2+	4859.5	22 6		
8934.81	2+	7532.26	2-	1402.5	4.6 4		
		7277.82	(2.3)+	1657.0	1.3 2		
		7113.73	4-	1821.0	0.65 16		
		6950.49	1-	1984.3	2.1 3		
		6750.41	2-	2184.3	2.1 3		
		6582.54	3-	2352.2	0.70 10		
		6029.71	3+	2905.0	1.2 4		
		6025.47	2-	2909.2	6.6 7		
		5902.63	1-	3032.1	0.63 17		
		5629.43	2+	3305.2	1.1 2		
		5248.81	2+	3685.8	2.1 9		
		5211.7	0+	3722.9	1.3 <i>3</i>		
		3904.38	2+	5030.1	37.6 17		
		3736.69	3-	5197.8	1.1 5		
		3352.62	0+	5581.8	8.2 8		
		0	0+	8933.7	29 2		
8978		3736.69	3-	5241			
8994.50	(1-,2+)	7113.73	4-	1880.7	0.33 8		
		6908.70	2+	2085.7	0.46 11		
		6750.41	2-	2244.0	0.45 6		
		6582.54	3-	2411.9	0.33 10		
		6285.15	3-	2709.3	0.48 12		
		6025.47	2-	2968.9	1.1 2		
		5629.43	2+	3364.9	6.5 5		
		5211.7	0+	3782.6	6.1 5		
		3904.38	2+	5089.8	6.2 6		
		3736.69	3-	5257.4	1.8 <i>3</i>		
		3352.62	0+	5641.5	1.6 4		
		0	0+	8993.4	74.6 16		
9031.9	4-	7694.15	3-	1337.7	10 3		
		6285.15	3-	2746.6	10 3		
		5902.63	1-	3129.1	<3		
		5629.43	2+	3402.3	<3		
		5613.53	4-	3418.2	40 5		
		5278.81	4+	3752.9	12 5		
		5248.81	2+	3782.9	<3		
		5211.7	0+	3820.0	<3		
		4491.44	5-	4540.2	28 5		
		3904.38	2+	5127.2	<5		
		3352.62	0+	5678.8	<5		
		0	0+	9030.8	<5		
9091.70	3-	7694.15	3-	1397.5	2.14 17		
		7623.11	(2-,3,4+)	1468.6	0.76 9		
		7466.37	2+	1625.3	0.41 3		
		7277.82	(2,3)+	1813.8	1.26 14		
		7239.07	(3-,4,5-)	1852.6	0.73 10		
		/113./3	4-	1977.9	0.55 9		
		6/50.41	2-	2541.2	0.5/14		

\mathbf{E}_{i}^{level}	\mathbf{J}_i^{π}	\mathbf{E}_{f}^{level}	J_f^{π}	$E_{\gamma}{}^{\dagger}$	I_{γ}^{\ddagger}	Mult.	δ
		6582.54	3-	2509.1	1.04 14		· · · · · · · · · · · · · · · · · · ·
		6285.15	3-	2806.4	5.1.3		
		6029.71	3+	3061.9	2.5 4		
		6025.47	2-	3066.1	2.9.5		
		5902.63	1-	3188.9	1.5.2		
		5278.81	4+	3812.7	854		
		5248.81	2+	3842.7	452		
		3904 38	2^+	5187.0	944		
		3736.69	3-	5354.6	58 1 10		
9135.66	(3)-	8424 81	2-	710.8	1 01 9		
/155.00	(3)	7872 18	$\frac{2}{2+}$	1263 5	0.32.5		
		7694 15	3-	1441 5	522		
		7532.26	2-	1603.4	372		
		7332.20	$(2 3)_{\pm}$	1857.8	0.754		
		7113 73	(2,3)+	2021.0	1.234 1.8412		
		6050.40	4-	2021.9	0.46.8		
		6750.49	1-	2165.1	0.40 0		
		6/50.41	2-	2385.2	0.62 9		
		6582.54	3-	2553.0	2.03 10		
		6285.15	3-	2850.4	13.8 4		
		6025.47	2-	3110.1	0.25 10		
		5902.63	1-	3232.9	3.0 2		
		5613.53	4-	3522.0	0.30 10		
		5248.81	2+	3886.7	0.49 17		
		3904.38	2+	5230.9	8.0 4		
		3736.69	3-	5398.6	58.7 9		
9209.77	(1,2,3)-	8484.02	0+	725.7	0.94 10		
		8424.81	2-	785.0	3.3 2		
		7694.15	3-	1515.6	4.5 2		
		7113.73	4-	2096.0	1.60 12		
		6950.49	1-	2259.2	2.8 2		
		6750.41	2-	2459.3	1.95 17		
		6582.54	3-	2627.1	2.2 2		
		6285.15	3-	2924.5	4.0 2		
		6025.47	2-	3184.2	1.6 2		
		5902.63	1-	3307.0	10.7 3		
		5629.43	2+	3580.2	2.1 2		
		3904.38	2+	5305.0	2.9 3		
		3736.69	3-	5472.7	61.6 10		
9226.69	(1 - 2 - 3 -)	7532.26	2-	1694.4	13.3.7		
/220.0/	(1,2,3)	6950.49	1-	2276.1	2 11 18		
		6750 41	2-	2476.2	322		
		6285.15	3-	2941.4	372		
		5902.63	1-	3323.9	$0.29 11^{c}$		
		5249.91	1-	2077.7	1 62 10d		
		2004 28	2+	5221.0	1.05 10		
		3904.38	2+	5521.9	0.30 <i>10</i>		
		3/36.69	3-	5489.6	5.2.4		
0005 10	(1.0.)	0	0+	9225.6	11.8 10		
9227.43	(1,2+)	6025.47	2-	3201.8	13.6 5		
		5902.63	1-	3324.7	$0.29 II^{\circ}$		
		5248.81	2+	3978.4	1.63 <i>18^d</i>		
		3904.38	2+	5322.7	0.30 <i>10^e</i>		
		3352.62	0+	5874.4	38.9 12		
		0	0+	9226.3	11.8 <i>10^f</i>		
9362.54	3-	8424.81	2-	937.7	1.8 <i>3</i>		
		7694.15	3-	1668.4	41.0 10		
		7658.23	4-	1704.3	10.9 8		
		7623.11	(2-,3.4+)	1739.4	1.6		
		6950.49	1-	2412.0	1.3		
			-				

 $\gamma(^{40}Ca)$ (continued)

			/(Ca) (continued)			
\mathbf{E}_{i}^{level}	J_i^π	\mathbf{E}_{f}^{level}	J_f^π	$E_{\gamma}{}^{\dagger}$	I_{γ}^{\ddagger}	Mult.	δ
		6750.41	2-	2612.0	1.5		
		6582.54	3-	2779.9	2.6.3		
		6285.15	3-	3077.3	3.9 10		
		5613.53	4-	3748.8	12.2.9		
		5248.81	2+	4113.5	4.4.8		
		3904 38	$\frac{2}{2+}$	5457.8	598		
		3736.69	3-	5625.4	346		
9388 20	2+	7694.15	3-	1694.0	29		
/300.20	21	7300 74	0±	2087.4	1.0		
		6542.78	4+	2845.3	11		
		6507.84	4+	2880.3	3.6		
		6285.15	3_	3102.9	1.3		
		6025.13	2= 2_	3362.6	2.5		
		5620.43	2-	3758.6	2.5		
		5029.45	2 +	4100.2	7.0		
		52/0.01	4+ 2 -	4109.2	2.1		
		5211.7	2+	4139.2	5.1 11		
		2004.29	0+	4170.5 5492 4	11		
		3904.38	2+	5485.4	5.4 6 7		
		3/30.09	3-	2021.1	0.7		
0404.05	2	0	0+	9387.0	40		
9404.85	2-	/532.26	2-	18/2.5	16		
		7277.82	(2,3)+	2127.0	0.8		
		/113./3	4-	2291.1	7.4		
		6950.49	1-	2454.3	1.5		
		6908.70	2+	2496.1	2.9		
		6582.54	3-	2822.2	3.8		
		6285.15	3-	3119.6	37		
		5902.63	1-	3502.1	7.3		
		3904.38	2+	5500.1	2.7		
		3736.69	3-	5667.7	18		
		0	0+	9403.7	2.6		
9418.8	3-	7694.15	3-	1724.6	4.4		
		7658.23	4-	1760.5	2.8		
		7623.11	(2-,3,4+)	1795.6	1.7		
		7532.26	2-	1886.5	2.0		
		7113.73	4-	2305.0	26		
		6750.41	2-	2668.3	2.6		
		6285.15	3-	3133.5	42		
		6025.47	2-	3393.2	2.3		
		5902.63	1-	3516.0	4.9		
		5613.53	4-	3805.1	2.0		
		5248.81	2+	4169.8	1.8		
		3736.69	3-	5681.7	7.5		
9429.11	(3.4)-	7694.15	3-	1734.9	7.7 10		
	(7658.23	4-	1770.8	36.2		
		7623.11	(23.4 +)	1806.0	1.2 4		
		7113.73	4-	2315.3	1.3.3		
		6582.54	3-	2846.5	9.2.16		
		6285.15	3-	3143.8	346		
		4491 44	5-	4937 3	29.2		
		3736 69	3-	5692.0	12 2		
9432 46	1-	7532.26	2-	1900.2	23		
7732.40	1.,	6050 40	2- 1-	2/81 0	2.5		
		6750.49	1- 2_	2401.9	0.7		
		6025 47	2-	2001.9	2.1		
		2004 29	∠- 2	5507 7	2.1 1.0		
		3904.38 0	2+ 0+	0421.2	1.0		
0452.05	2	0	0+ 2	9431.3 1020-1	75 1 47 10		
7423.93	3-	0424.81 7604.15	∠- 2	1029.1	1.4/10		
		/094.13	3-	1/39.8	LL.L /		

\mathbf{E}_{i}^{level}	\mathbf{J}_i^{π}	\mathbf{E}_{f}^{level}	${ m J}_f^{\pi}$	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	Mult.	δ
	. <u></u>	7658.23	4-	1795.7	7.1 6		
		7623.11	(2-34+)	1830.8	183		
		7532.26	2-	1921.6	1.0.2		
		7446.23	(3.4)+	2007.7	0.7.2		
		7113 73	4-	2340.2	10 5 5		
		6750.41	2-	2703.4	212		
		6285.15	2-	3168.7	2.1 2		
		6025.15	2- 2-	3428.3	183		
		5629.43	2- 2+	3824.3	253		
		5613 53	2+ 4	3840.2	2.5 5		
		5015.55	4-	4174 0	10.2 0		
		3004 38	4+ 2+	41/4.9 55/0.2	1.0		
		2726.60	2	5716.9	4.90		
0602.0	2	3730.09	3- 4	2480.2	3.4 4 22		
9005.0	5-	/115./5	4-	2409.2	33 54		
		0285.15	3- 2	5517.7	34		
06046	1	3/30.09	3-	2072.2	215		
9004.0	1-	/552.20	Z- 1	2072.3	5.0		
		6950.49	1-	2054.0	1.1		
		6/50.41	2-	2854.1	1./		
		6025.47	2-	35/9.0	4.1		
		3904.38	2+	5699.8	0.9		
		3352.62	0+	6251.4	1.2		
	-	0	0+	9603.4	86		
9640.89	2-	7466.37	2+	2174.5	7.9 3		
		6950.49	1-	2690.3	0.15 3		
		6908.70	2+	2732.1	0.50 5		
		6285.15	3-	3355.6	0.47 11		
		5629.43	2+	4011.2	4.70 10		
		3904.38	2+	5736.1	47.3 5	D+Q	
		3736.69	3-	5903.7	39.0 <i>5</i>		
		0	0+	9639.6	1.5		
9668.71	3-	7694.15	3-	1974.5	0.65 13		
		7532.26	2-	2136.4	1.83 15		
		7446.23	(3,4)+	2222.4	0.68 11		
		7113.73	4-	2554.9	26.9 7		
		6908.70	2+	2759.9	0.67 14		
		6750.41	2-	2918.2	2.06 18		
		6285.15	3-	3383.4	44.4 6		
		6025.47	2-	3643.1	3.0 3		
		4491.44	5-	5176.9	3.00 10		
		3904.38	2+	5763.9	3.6 2		
		3736.69	3-	5931.6	13.2 6		
9779.49	3	8748.20	2+	1031.3	3.4 <i>3</i>		
		8678.29	4+	1101.2	3.3 4		
		8578.80	2+	1200.7	5.0 <i>3</i>		
		8134.76	(2-,3,4+)	1644.7	2.7 2		
		7928.42	4+	1851.0	5.3 <i>3</i>		
		7872.18	2+	1907.3	5.7 5		
		7561.18	3+	2218.2	18.9 8		
		7466.37	2+	2313.1	3.0		
		6908.70	2+	2870.7	4.2.5		
		6582.54	3-	3196.8	1.5 4		
		6542.78	4+	3236.6	1.3.3		
		6507 84	4+	3271 5	0.7.2		
		6029 71	3+	3749.6	1.1		
		5629 43	2+	4149.8	2.0.2		
		5613 53	4-	4165 7	1998		
		5278 81	4+	4500.4	544		
		5248.81	2+	4530.4	0.7.2		
		5240.01	4 T	4550.4	0.7 2		

\mathbf{E}_{i}^{level}	\mathbf{J}_i^{π}	\mathbf{E}_{f}^{level}	$\mathbf{J}_f^{m{\pi}}$	$E_{\gamma}{}^{\dagger}$	I_{γ}^{\ddagger}	Mult.	δ
		3904.38	2+	5874.7	14.6 9		
		3736.69	3-	6042.3	5.4 6		
9785.3	(1,2+)	7300.74	0+	2484.5	2.2		
		6908.70	2+	2876.5	0.7		
		3904.38	2+	5880.5	2.5		
		3352.62	0+	6432.1	9.6		
		0	0+	9784.0	85		
9865.15	1	8439.0	0+	1426.1	0.18 5		
		8091.61	2+	1773.5	0.73 8		
		7872.18	2+	1992.9	0.21 3		
		7701.8	0+	2163.3	0.53 18		
		7466.37	2+	2398.7	0.41 6		
		7300.74	0+	2564.3	3.2.2		
		7277.82	(2,3)+	2587.2	0.20 7		
		6950.49	1-	2914.6	0.32 4		
		6908.70	2+	2956.3	1.10 10		
		0/30.41 5002.62	2- 1	3114.0	0.212		
		5620.42	1-	3902.3	0.354		
		5248 81	2+	4255.5	0.41 7 0.25 3		
		5211.7	2+ 0+	4610.1	0.25 5		
		3904 38	$\frac{0+}{2+}$	5960.3	512		
		3352 62	0+	6512.0	15.0.5		
		0	0+	9863.8 ^g	71.4 12		
9869.3	1+	7701.8	0+	2167.4	0.8		
		7300.74	0+	2568.5	2.3		
		6908.70	2+	2960.5	0.9		
		5248.81	2+	4620.2	0.8		
		5211.7	0+	4657.3	0.6		
		3904.38	2+	5964.4	5.6		
		3352.62	0+	6516.1	13		
		0	0+	9868.0	76		
9954.00	4+	8373.94	4+	1580.0	3.8 <i>3</i>		
		6931.29	3-	3022.6	3.0 3		
		6582.54	3-	3371.3	1.2 3		
		6542.78	4+	3411.1	10.6 6		
		6507.84	4+	3446.0	4.2.2		
		5613.53	4-	4340.2	4.8 4		
		5278.81	4+	4674.9	58.2 17		
		4491.44	3- 2	5402.2	2.14		
10040 54	(2, 2)	5/50.09 8764 19	3- 2	0210.8	0.30 547		
10040.34	(2-,3-)	8/8/ 02		1270.5	J.4 / 1 8 3		
		8323.16	(1 2 +)	1717 3	1.8 J 51 7 10		
		7623.10	(1-,2+) (2-3.4+)	2417.4	233		
		7532.26	(2-,3,++) 2-	2508.2	0.93.18		
		7277.82	(2,3)+	2762.6	8.3.3		
		7113.73	4-	2926.7	4.4.3		
		6950.49	1-	3089.9	6.6 6		
		6582.54	3-	3457.8	1.4 2		
		6025.47	2-	4014.9	2.0 2		
		5902.63	1-	4137.7	13.6 6		
		3736.69	3-	6303.3	2.0 2		
10049.38	4-	9031.9	4-	1017.5	11.5 5		
		8187.69		1861.6	0.51 5		
		7769.4	(3,4,5)-	2279.9	2.37 14		
		7239.07	(3-,4,5-)	2810.2	0.76 13		
		7113.73	4-	2935.5	14.0 4		
		6582.54	3-	3466.7	7.3 <i>3</i>		

			<u>/(Cu) ((</u>	continued)			
\mathbf{E}_{i}^{level}	\mathbf{J}_i^{π}	\mathbf{E}_{f}^{level}	J_f^{π}	$E_{\gamma}{}^{\dagger}$	I_{γ}^{\ddagger}	Mult.	δ
		6285 15	3-	3764.0	1 26 9		
		6025.47	2-	4023.7	1.30 10		
		5613 53	2- 4-	4025.7	0.95.0		
		4401 44	4- 5	5557 5	1634		
		2726.60	3-	6212.2	10.5 4		
100/0 52	2	3730.09	5-	0512.2	45.79		
10262.53	3-	7623.11	(2-,3,4+)	2639.3	1.4 2		
		/466.3/	2+	2796.1	15.6 9		
		7446.23	(3,4)+	2816.2	4./4		
		7113.73	4-	3148.7	1.4 3		
		6582.54	3-	3679.8	4.1 3		
		6029.71	3+	4232.6	16.1 <i>13</i>		
		5902.63	1-	4359.7	2.7 4		
		5629.43	2+	4632.8	2.9 4		
		5248.81	2+	5013.4	3.6 4		
		3904.38	2+	6357.6	36.0 10		
		3736.69	3-	6525.3	11.5 10		
10318.8	1+	7701.8	0+	2616.9	0.71 7		
		6950.49	1-	3368.2	0.41 7		
		5629.43	2+	4689.1	0.27 7		
		5211.7	0+	5106.8	0.77 6		
		3904.38	2+	6413.9	3.4 2		
		3352.62	0+	6965.5	11.9 4		
		0	0+	$10317 A^{h}$	8257	D^h	
10/15 06	3	7604 15	0+ 3	2720.8	042	D	
10415.00	5	7622.11	$(2 \ 2 \ 4 \downarrow)$	2720.8	1675		
		7025.11	(2-,3,4+)	2/91.0	10.7 5		
		7301.10	3+ 2+	2033.0	5.0.2		
		7400.57	2+	2948.0	3.9 2		
		7440.23	(3,4)+	2908.7	17.4 4		
		7277.82	(2,3)+	3137.1	0.88 14		
		/113./3	4-	3301.2	1.5/1/		
		6931.29	3-	3483.6	4.0 2		
		6908.70	2+	3506.2	15.7 4		
		6750.41	2-	3664.5	2.50 10		
		6582.54	3-	3832.3	1.34 14		
		6507.84	4+	3907.0	1.02 16		
		6285.15	3-	4129.7	0.36 9		
		6025.47	2-	4389.3	5.9 <i>3</i>		
		5629.43	2+	4785.3	0.81 6		
		5613.53	4-	4801.2	6.9 <i>3</i>		
		5278.81	4+	5135.9	2.7 2		
		5248.81	2+	5165.9	1.69 17		
		3904.38	2+	6510.1	3.5 <i>3</i>		
		3736.69	3-	6677.8	7.1 4		
10639.07	(3-,4,5-)	8134.76	(2-,3,4+)	2504.2	1.3 2		
		7113.73	4-	3525.2	4.0 3		
		6931.29	3-	3707.6	42.1 12		
		6582.54	3-	4056.3	1.6 2		
		6542.78	4+	4096.1	2.90 10		
		6507.84	4+	4131.0	4.0 2		
		5613.53	4-	5025.2	13.6 6		
		5278.81	4+	5359.9	4.4 4		
		4491.44	5-	6147.1	3.6 <i>3</i>		
		3736.69	3-	6901.7	22.5 10		
10699.50	3	8373.94	4+	2325.5	1.01 14		
	-	8091.61	2+	2607.8	0.72 9		
		7532.26	2-	3167.1	1.01 16		
		7466.37	2+	3233.0	0.9.2		
		7446.23	(3,4)+	3253.1	0.92 15		
			<- , / ·				

			1((
\mathbf{E}_{i}^{level}	\mathbf{J}_i^{π}	\mathbf{E}_{f}^{level}	$\mathbf{J}_f^{\boldsymbol{\pi}}$	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	Mult.	δ
		6908.70	2+	3790.6	2.6 2		
		6542.78	4+	4156.5	2.0 2		
		6285.15	3-	4414.1	1.4 2		
		6029.71	3+	4669.5	3.8 <i>3</i>		
		5629.43	2+	5069.7	5.5 3		
		5613.53	4-	5085.6	2.0 2		
		5278.81	4+	5420.3	9.2 5		
		3904.38	2+	6794.5	51.3 16		
		3736.69	3-	6962.2	8.0 17		
10/3/./	1-	7694.15	3-	3043.4	9.2 17		
		6908.70	2+	3828.8	4.3 14		
		6285.15	3-	4452.3	7.8 13		
10747.0	4	0	0+	10/36.2	55 3		
10/4/.8	4+	5629.43	2+	5118.0	12.5 9		
		3904.38	2+	6842.8 7010 5	84.3 10		
10770.2	$(1 \downarrow)$	3/30.09	3- 4	7010.5	3.20		
10770.2	(1+)	/115./5	4- 2	2861.2	5.5 / 6 0 7		
		0908.70 5248.81	2+	5521.0	0.0 7		
		0	2+	10768.6	42 2		
10010.0		3736.60	3_	7172.6	100		
10921.1		6025.47	3- 2-	4895 3	10		
10)21.1		5278.81	$\frac{2}{4+}$	5641.9	50		
10956.0	(3 - 4 + 5 -)	8187 69		2768.2	5		
1070010	(0,,0)	7481		3474.8	10		
		7446.23	(3.4)+	3509.6	< 5		
		5902.63	1-	5053.0	10		
		5613.53	4-	5342.1	8		
		5278.81	4+	5676.8	44		
		3736.69	3-	7218.6	25		
10988.0	2-	8978		2010.0	5		
		6908.70	2+	4079.1	5		
		6285.15	3-	4702.6	10		
		5629.43	2+	5358.2	10		
		3904.38	2+	7083.0	40		
		3736.69	3-	7250.6	35		
10994.7	(1-)	5278.81	4+	5715.5			
		5248.81	2+	5745.5			
11011.0	2	3736.69	3-	7257.3	10.2		
11011.0	3-	8338.0		2672.9	12.3		
		7976	<i>C</i> .	3034.9	<3		
		/6/6.6	6+ 0 -	3334.3	12		
		/300.74	0+	3/10.1	< 3		
		6020 71	3-	4079.3	< 3		
		4401 44	5	4981.0	< J 15 2		
		3904 38)- 2⊥	7105.9	43 5		
		3736.69	3-	7273.6	13		
		0	0+	11009.4	6		
11042.0	2+	3904 38	2+	7136.9	0		
11072.0	<i>2</i> ·	3736 69	3-	7304.6			
11070.0	(3)	5613.53	4-	5456.1	5		
	(-)	5278.81	4+	5790.7	10		
		5248.81	2+	5820.7	10		
		3904.38	2+	7164.9	65		
		3736.69	3-	7332.6	10		
11080		0	0+	11078			
12038		0	0+	12036			
12049		0	0+	12047			

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	\mathbf{E}_{i}^{level}	J_i^π	\mathbf{E}_{f}^{level}	${ m J}_f^{\pi}$	$E_{\gamma}{}^{\dagger}$	I_{γ}^{\ddagger}	Mult.	δ
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	12068		0	0+	12066			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	12074		0	0+	12072			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	12099		0	0+	12097			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	12111		0	0+	12109			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	12204		0	0+	12202			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	12334		0	0+	12332			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	12423		0	0+	12421			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	12604		0	0+	12602			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	12647		3352.62	0+	9293			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	12668		3352.62	0+	9314			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			0	0+	12666			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	12688		0	0+	12686			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	12875		3352.62	0+	9521			
12980 0 0+ 12978			0	0+	12873			
	12980		0	0+	12978			
12990 3352.02 0+ 9042	12996		3352.62	0+	9642			
13086 0 0+ 13084	13086		0	0+	13084			
13113 3352.62 0+ 9759	13113		3352.62	0+	9759			
0 0+ 13111			0	0+	13111			
13194 3352.62 0+ 9840	13194		3352.62	0+	9840			
0 0+ 13192			0	0+	13192			
13203 0 0+ 13201	13203		0	0+	13201			
13289 3352.62 0+ 9935	13289		3352.62	0+	9935			
0 0+ 13287			0	0+	13287			
13822 0 0+ 13819	13822		0	0+	13819			
13913 3352.62 0+ 10559	13913		3352.62	0+	10559			
0 0+ 13910	10000		0	0+	13910			
13993 3352.62 0+ 10639	13993		3352.62	0+	10639			
0 0+ 13990	19260		0	0+	13990		D	
18250 0 0+ 18255 D	18260		0	0+	18256		D	
18080 0 0+ $180/5$ D	18080		0	0+	180/5		D	
190/0 0 0+ 19005 D	19070		0	0+	19065		D	
19430 0 0+ 19443 D	19430		0	0+	19445		D	
19630 0 0+ 19643 D 20120 0 0+ 20125	19830		0	0+	19845		D	
20130 0 0+ $2012320420 0 0+ 20424 D$	20130		0	0+	20123		D	
20+30 0 0+ $20+24$ D 20650 0 0+ 20644 D	20450		0	0+	20424		D D	
20030 0 0+ 20044 D 20040 0 0+ 20034 D	20030		0	0+	20044		ע	
20740 0 0+ 20734 D 21/00 0 0+ $21/84$	20240		0	0+	20954		D	
21470 0 0+ 2140421600 0 0+ 21684	21490		0	0+	∠1404 21684			
22060 0 0+ 22004	21070		0	0+	22053			

$\gamma(^{40}Ca)$	(continued)
-------------------	-------------

[†] Level-energy differences, with recoil correction removed.
[‡] Weighted average from 1990Ki07 and 1988Sc23.
^a From 1963Le08.
^b From 1988Sc23. 30% 20 γ-branching undetermined in 1990Ki07.
^c For 3323.9+3324.7.
^d For 3977.7+3978.4.
^e For 5321.9+5322.7.
^f For 9225.6+9226.3.

^f For 9225.6+9226.3. ^g Γ_γ=1.06 eV 15 (1988A116). ^h Γ_γ=5.8 eV 8 (1988A116).
39 K(p,p),(p, α):resonances

1990Bu02,1987WaZI,1970De30

 $J\pi(^{39}K \text{ g.s.})=3/2+.$

Other main reference: 1974Na09.

Most resonances decay to g.s. of ³⁹K in (p,p) and g.s. of ³⁶Ar in (p, α). See ³⁹K(p, γ), ³⁶Ar(α , γ):resonances, and ⁴⁰Ca(p,p α),(p,2p):resonances datasets for additional resonances observed in those re-

action. All data are from (p,p_0) or (p,α_0) channels, with the exception of five resonances from 1969Va14 above 6 MeV which are from p_1 and p_4 channels. 1990Bu02: E=2.4-4.0 MeV. Measured $\sigma(\theta)$, for a total of 30 resonances from E(p)(lab)=2389.1 to 3998.2, all with J π =2+.

FWHM=0.45 keV. Deduced widths and other relevant parameters.

1983Sh33 (same group as 1990Bu02): E=3.192-3.224 MeV. Measured $\sigma(\theta)$. Also (pol p, α) for E=3212 keV.

1987WaZI (from the same lab as 1990Bu02): E=1.9-4.0 MeV. Measured $\sigma(\theta)$. A total of 248 resonances reported, fifty of which were assigned 2+. Relevant resonance parameters for proton and α decay of these resonances are given. Only the widths are quoted here. The uncertainty is assigned by the evaluators as 0.5 keV based on overall FWHM=450 eV. The actual uncertainty may be lower than this for strong and well-resolved peaks.

1970De30: E=1.03-3.23 MeV. Measured $\sigma(\theta)$. A total of 34 resonances reported between E(p)(lab)=1102.5 and 2983.

1974Na09: (p, α) E=3.05-4.20 MeV. Measured $\sigma(\theta)$.

1969Va14: E=6.28-6.73 MeV. Five resonances reported between E(p)(lab)=6350 and 6660 corresponding to p1 and p4 channels.

⁴⁰Ca Levels

$E(\text{level})^{\dagger}$	$J^{\pi \ddagger}$	L ^e	$(2J+1)\Gamma_p^2/\Gamma (\text{keV})^e$	Comments
9402.9 <i>14</i> ^{&}	2- ^{&}	1	0.7	$E(p)(lab)=1102.5 \ 10.$
9430.1 14 ^{&}	1-&	1	0.7	$E(p)(lab)=1130.4 \ 10.5$
9452.6 14 ^{&}	(2.3)-&	1	0.6	E(p)(lab)=1153.4.10
9535 0 14 ^{&}	1-&	1	12	E(p)(lab) = 1237.9 I0
9601.0 14 ^{&}	3_&	1	3.4^f	$E(p)(lab) = 1305.6 \ 10$
9602.5 14 ^{&}	1-&	1	3.4^f	E(p)(lab)=1307.2, 10.
9666 2 ^{&}	(< 3)-&	1	1.8	E(p)(lab)=1372.4 15.
9799 2 ^{&}	(≤ 3) -&	1	1.0	E(p)(lab)=1509.2
9850 2 ^{&}	(≤ 3) -&	1	1.0	E(p)(lab)=1561/2
$10199.1.5^{a}$	$(1-)^a$	1	0.8	$E(p)(lab)=1919.1.5$, $\Gamma_{p}=1.6$ keV (1987WaZI).
101777110	(-)	-	0.0	$J\pi$: 2 is also possible (1987WaZI).
10265 2 ^{&}	1-&	1	2.8	E(p)(lab)=1987 2.
10275.1 5	(1-)			$E(p)(lab)=1997.0 5$, $\Gamma_p=1.6$ keV.
				$J\pi$: 2 is also possible (1987WaZI).
10280 2 ^{&}	1-&	1	3.4	E(level): may be the same level as 10275.
				$E(p)(lab)=2002 \ 2 \ (1970De30)$; this resonance may be the same as 1997
10222 7 5	(2)			in 1987WaZI.
10333.7 5	(3-)			$E(p)(1ab)=2057.15, 1_p=0.11 \text{ keV}, 1_{\alpha}=0.001 \text{ keV}.$
10362.6.5	1_			$J\pi$: 1 is also possible (1967 wazi). $F(p)(l_2b) = 2086 \ 8 \ 5 \ \Gamma = 0.60 \ k_eV \ \Gamma = 0.0030 \ k_eV$
$10364.6.5^{a}$	1^{-}	1	27	$E(p)(lab)=2080.05, \Gamma_p=0.00 \text{ KeV}, \Gamma_{\alpha}=0.0050 \text{ KeV}.$ $E(p)(lab)=2088.85, \Gamma_{\alpha}=1.1 \text{ keV}, \Gamma_{\alpha}=0.0050 \text{ keV}.$ (1987WaZI)
10504.0 5	1	1	27	I_{π} : from 1987WaZL Other: 3- in 1970De30
10376.6 5	1-			$E(p)(lab)=2101.1 5$, $\Gamma_n=0.60$ keV, $\Gamma_{\alpha}=0.0020$ keV.
10420.2 5	1-			$E(p)(lab)=2145.85$, $\Gamma_{p}=0.50$ keV, $\Gamma_{\alpha}=0.0028$ keV.
10443.4 5	2-			$E(p)(lab)=2169.6 5, \Gamma_p=4.0 \text{ keV}.$
10446.8 5 ^a	1- ^a	1	3.1	$E(p)(lab)=2173.1 5$, $\Gamma_p=0.15$ keV, $\Gamma_{\alpha}=0.001$ keV (1987WaZI). Other
				$E(p)(lab) = 2174 \ 2 \ (1970 De30).$
1051605				$J\pi$: from 1987WaZI. Other: 3- (1970De30).
10516.3 5	I-			$E(p)(lab)=2244.4 \ 5, \ 1_p=1.2 \ keV, \ 1_{\alpha}=0.010 \ keV.$
10517.2.5	(1+)			$E(p)(1ab) = 2245.5 \text{ S}, 1_p = 0.30 \text{ keV}.$
10529.0 5	(1+)			$E(p)(1ab)=2258.0 \ 5, 1_p=0.40 \ \text{kev}.$
10541 5 5 ^c	0+			$F(n)(l_2h) = 2270.3.5$ $\Gamma = -0.16$ keV $\Gamma_{} = -0.025$ keV
10596.2.5	0+ 3-			$E(p)(lab)=2326.4.5 \Gamma_{\mu}=0.15 \text{ keV}, \Gamma_{\alpha}=0.025 \text{ keV}$
10598.4 5	(1+)			$E(p)(lab)=2328.6.5, \Gamma_p=0.20 \text{ keV}.$
	()			$J\pi$: 0 is also possible (1987WaZI).
10607.4 5	0(+)			$E(p)(lab)=2337.85, \Gamma_p=0.20 \text{ keV}.$
10618.6 5	2-			$E(p)(lab)=2349.3 5$, $\Gamma_p=3.5$ keV.
10621.4 5 ^{ac}	$0+^a$		15	$J\pi$: from 1987WaZI. Other: 1- (1970De30).

E(level) [†]	$J^{\pi\ddagger}$	L ^e	$(2J+1)\Gamma_p^2/\Gamma (\text{keV})^e$	Comments		
		_		E(p)(lab)=2352.2 5, Γ_p =0.030 keV, Γ_{α} =0.0080 keV (1987WaZI). Other:		
				$E(p)=2354 \ 3 \ (1970 De30).$		
10633.6 5	(1-)			$E(p)(lab)=2364.7 5$, $\Gamma_p=1.1$ keV, $\Gamma_{\alpha}=0.0015$ keV.		
				$J\pi$: 3 is also possible (1987WaZI).		
10655.9 5	(1-)			E(p)(lab)=2387.6 5, Γ_p =0.59 keV, Γ_{α} =0.0050 keV.		
				$J\pi$: 3 is also possible (1987WaZI).		
10657.4.5#	2.+#	0	1.2	E(p)(lab)=2389.1.5 (1990Bu02), 2390.3 (1970De30).		
1000/11/0		0		$\Gamma_n=0.350 \text{ keV}$. $\Gamma_{\alpha}=0.004 \text{ keV}$		
10666 4 5 ^a	2^{a}	1	17	$I\pi$: from 1987WaZI 1- in 1970De30		
10000110	-		17	$E(n)(lab)=2398.4.5$ $\Gamma_{r}=2.0$ keV (1987WaZI)		
$10675 4 5^{a}$	1-a	1	0.5	$E(p)(lab)=2407.6.5$ $\Gamma_{r}=1.5$ keV $\Gamma_{r}=0.060$ keV (1987WaZI)		
$10692.9.5^{a}$	1 + a	0	0.7	$I\pi$: from 1987WaZI (1.2)+ in 1970De30		
100/20/0		0	017	$E(p)(lab)=2425.5.5$ $\Gamma_{p}=1.1$ keV (1987WaZI).		
10700 9 5	0+			$E(p)(lab)=2433.7.5$ $\Gamma_{r}=0.60$ keV $\Gamma_{r}=0.001$ keV		
10722.1.5	1+			$F(n)(lab)=2455.5 \ 5.5 \ \Gamma_n=1.1 \ keV$		
10722.15^{a}	1-a	1	15	$E(p)(lab)=2473.9.5, T_p=1.1 \text{ keV}_{s}$		
10748.8.5	0+	1	1.5	$F(p)(lab) = 2482.9.5$, $\Gamma_p = 2.2 \text{ keV}$, $\Gamma_{\alpha} = 0.0000 \text{ keV}$		
10772 1 5	(1+)			$F(p)(lab)=2506.8.5$, $\Gamma_p=0.050$ keV		
10772.1 5	(1)			I_{π} : 2 is also possible (1987WaZI)		
10778 2 5#	2.1#			$F(p)(l_{2}b) = 2513.0.5 \Gamma = 0.180 \text{ keV} \Gamma = 0.004 \text{ keV}$		
10770.2 J	2^+	1	25	$E(p)(1a0) = 2515.0$ J, $p = 0.100$ KeV, $1 \alpha = 0.004$ KeV.		
10780.5 5	5-	1	55	$(1070D_{0}20)$		
				$F(n)(lab) = 2515.4.5$ $\Gamma_n = 1.0$ keV $\Gamma_n = 0.010$ keV (1987WaZI) Other		
				F(n)(lab)=2515.4.3 (1970De30)		
10783.1.5	(0-)			$E(p)(lab)=2518.0.5, \Gamma_{p}=0.70 \text{ keV}.$		
				$I\pi$: 1 is also possible (1987WaZI).		
10802.6.5	0(+)			$E(n)(lab)=2538.1.5$, $\Gamma_n=0.50$ keV, $\Gamma_n=0.20$ keV.		
$10816.2.5^{a}$	2^{a}	1	13	$I\pi$: from 1987WaZI (1-) in 1970De30		
10010.2 5	-	1	15	$E(p)(lab)=2552.0.5$, $\Gamma_{n}=6.0$ keV (1987WaZI).		
10816.4.5	3+			$E(p)(lab)=2552.2, 5, \Gamma_p=0.50 \text{ keV}$		
10833.0.5	3(-)			$E(p)(lab)=2569.2.5, \Gamma_p=0.025 \text{ keV}, \Gamma_{\alpha}=0.0009 \text{ keV}.$		
10849.2.5	2-			$E(p)(lab)=2585.85, \Gamma_p=11 \text{ keV}.$		
$10852.0.5^{a}$	$(1-2-)^{a}$	1	30	$I\pi$: (1-2-) in 1987WaZI. 1- in 1970De30.		
1000210 0	(1,=)	-	00	$E(n)(lab)=2588.7.5$ $\Gamma_{r}=2.5$ keV (1987WaZI)		
10861 3 5#	2_#			$F(p)(lab) = 25007 + 6, T_p = 210 \text{ keV} (1507 + 0.005 \text{ keV})$		
10868.9.5	1_			$E(p)(lab)=2606.0.5$, $\Gamma_p=0.040$ keV, $\Gamma_{\alpha}=0.000$ keV		
10869 5 5	0+			$E(p)(lab)=2606.05, T_p=20 \text{ keV}, T_Q=0.070 \text{ keV}$		
10007.5 5	01			$I\pi$: 2 is also possible (1987WaZI)		
10873 7 5	1-			$F(n)(lab)=2611.0.5$ $\Gamma_{c}=4.0$ keV		
10075.75	1-			$I_{p}(\pi \sigma) = 2011.0.0, T_{p} = 4.0 \text{ KeV}.$		
10800 1 5	1.			$F(n)(l_2h) = 2637.0.5 \Gamma = 0.41 \text{ keV}$		
10077.15 10014.65^{a}	1^{a}	1	6.9	$F(p)(lab)=2652.9.5, \Gamma_{p}=0.41 \text{ KeV}$		
10915.6.5	3_	1	0.9	$F(p)(lab)=2653.9.5, \Gamma_p=0.0 \text{ keV}$		
10/15.0 5	51			I_{π} : 1+ 2+ in 1987WaZI: later corrected to 3+ by the same group		
$10932 5 5^{a}$	1-a	1	15	$F(n)(lab)=2671.3.5$ $\Gamma_{-}=2.0$ keV $\Gamma_{-}=0.0080$ keV (1987WaZI)		
10032.55	2	1	15	$E(p)(lab)=2672.0.5, \Gamma_p=2.0 \text{ keV}, \Gamma_{\alpha}=0.0000 \text{ keV} (100700021).$		
10955.2 5	2-			$E(p)(1ab)=2672.0 \ 5, \ \Gamma_p=0.10 \ \text{kev}.$		
10946.8 5"	2+" 1 a	1	20	$E(p)(1ab)=2085.9 \text{ 5}, 1_p=0.215 \text{ keV}, 1_{\alpha}=0.011 \text{ keV}.$		
10950.7 5"	1-"	1	30	$J\pi$: from 198/waZI, 1- in 19/0De30.		
10052 4 5	0()			$E(p)(lab)=2689.9 \text{ 5, } 1_p=7.0 \text{ keV} (1987WaZI).$		
10953.4 5	0(+)			$E(p)(1ab)=2692.75$, $T_p=0.20$ keV, $T_{\alpha}=0.020$ keV.		
10988.5 5	2-			$E(p)(1ab)=2728.75, T_p=9.0 \text{ KeV}.$		
10989.2 3	(1+)			$E(p)(100)=2/29.4 \text{ J}, 1_p=0.4 \text{ KeV}.$		
10000 7 50	2 1 4	1	20	$J\pi$: U is also possible (198/WaZI).		
10998.7 5"	3-,1-"	1	20	$J\pi$: 5-,1- in 198/WaZI, (1-) in 19/UDe30.		
				$E(p)(1ab)=2/39.2$ 5, 1 $_p=0.20$ keV, 1 $_{\alpha}=0.0020$ keV (198/WaZI). Other:		
11007.0.54	1 a	1	2.1	E(p)=2/35/3 (19/0De30).		
11007.0.3"	1-"	1	2.1	J. HUIII 196/ WaZI, $(1,3)$ - III 1970/0000. E(a)(1ak)-2747.7.5. E = 5.0 keV, E = 0.010 keV (1007W-71) 0.1		
				$E(p)(1ab)=2/4/.7$ 3, 1 p=5.0 KeV, 1 α =0.010 KeV (198/WaZ1). Other: $E(\alpha)=2750/2$ (1070D=20)		
				E(p) = 2750.5 (1970) De50).		

$E(level)^{\dagger}$	$J^{\pi \ddagger}$	L ^e	$(2J+1)\Gamma_p^2/\Gamma (\text{keV})^e$	Comments		
11024.0 5 ^a	3(-) ^a	1	0.7	0.7 J π : from 1987WaZI, 1- in 1970De30.		
				E(p)(lab)=2765.1 5, Γ_p =0.10 keV, Γ_{α} =0.012 keV (1987WaZI).		
11036.1 5	(1+)			$E(p)(lab)=277.5.5, T_p=0.10 \text{ keV}.$		
11044 3 5#	2⊥#	0	1.0	$J\pi$. 2 is also possible (1987 wdZi). $F(p)(l_2b)=2785.9.(1990Bu02).2789.3.(1970De30).$		
11044.5 5	27	0	1.0	$\Gamma_n=0.50 \text{ keV}, \Gamma_{\alpha}=0.002 \text{ keV}.$		
11073.3 5	2+			$E(p)(lab)=2815.75, \Gamma_p=0.66 \text{ keV}, \Gamma_{\alpha}=0.0006 \text{ keV}.$		
11078.2 5	1-			$E(p)(lab)=2820.7 5$, $\Gamma_p=1.2$ keV, $\Gamma_{\alpha}=0.0040$ keV.		
11083.4 5	(1+)			$E(p)(lab)=2826.1 5, \Gamma_p=0.35 \text{ keV}.$		
11020 1 5	O(1)			$J\pi$: 0,2 are also possible (198/WaZI).		
11089.15 11106.85^{a}	1^{-a}	1	5.2	I_{α} from 1987WaZI 0- in 1970De30		
11100.0 5	1	1	5.2	$E(p)(lab)=2850.1 5, \Gamma_p=3.9 \text{ keV}$ (1987WaZI). Other: $E(p)=2855 3$		
	"			(1970De30).		
11118.8 5#	2+#			E(p)(lab)=2862.3 5, Γ_p =0.040 keV, Γ_{α} =0.006 keV.		
11128.9 5	4+			$E(p)(lab)=2872.75, \Gamma_p=0.11 \text{ keV}, \Gamma_{\alpha}=0.0014 \text{ keV}.$		
11145.0 5	1(-)			$E(p)(1ab)=2889.2 \ 3, \ 1_p=0.20 \ \text{keV}, \ 1_{\alpha}=0.0020 \ \text{keV}.$ $E(p)(1ab)=2889.8 \ 5, \ \Gamma = 0.20 \ \text{keV}.$		
11145.0 5	1+ 2-			$E(p)(1ab)=2803.85, \Gamma_p=0.20$ KeV. $E(p)(1ab)=2901.55, \Gamma_n=48$ keV		
11161.3 5	$\frac{-}{4(+)}$			$E(p)(lab)=2905.9 5, \Gamma_p=0.040 \text{ keV}, \Gamma_{\alpha}=0.0008 \text{ keV}.$		
11162.7 5	2+			$E(p)(lab)=2907.4 \ 5, \ \Gamma_p=3.5 \ keV.$		
11167.2 5	4+			E(p)(lab)=2912.0 5, Γ_p =0.080 keV, Γ_{α} =0.0030 keV.		
11187.4 5	3-			E(p)(lab)=2932.7 5, $\Gamma_p=1.4$ keV, $\Gamma_{\alpha}=0.0016$ keV.		
11202.7 5	(2-)			$E(p)(Iab)=2948.4 \text{ S}, I_p=6.0 \text{ keV}.$		
11212.4 5 ^a	3 _ <i>a</i>	1	175	$E(n)(lab)=295845$, $\Gamma_n=2.8$ keV, $\Gamma_n=0.0014$ keV (1987WaZI). Other:		
11212110	5		110	$E(p)=2962 \ 3 \ (1970De30).$		
11217.6 5	4+			$E(p)(lab)=2963.7 5$, $\Gamma_p=1.4$ keV, $\Gamma_{\alpha}=0.001$ keV.		
11231.2 5 ^a	2- ^a	1	3	$J\pi$: from 1987WaZI, (1,2,3)- in 1970De30.		
				$E(p)(lab)=2977.6 5, \Gamma_p=3.0 \text{ keV} (1987WaZI). \text{ Other: } E(p)=2972 3 (1970De30)$		
11236 <i>3</i> ^{&}	1-&	1	11.7	$E(p)(lab)=2983 \ 3 \ (1970De30);$ not reported by 1987WaZI.		
11246.6 5	3-			E(p)(lab)=2993.4 5, Γ_p =0.080 keV, Γ_{α} =0.012 keV.		
11255.7 5	1+			$E(p)(lab)=3002.8 5, \Gamma_p=0.30 \text{ keV}.$		
11260.6 5	(0-)			$E(p)(lab)=3007.85, \Gamma_p=6.0 \text{ keV}.$		
11264 2 5#	2,#			$J\pi$: 1 is also possible (1987 waZi). E(p)(lab)=2011 4 5 Γ =0.225 keV Γ =0.016 keV		
11204.2 5	(2-)			$E(p)(1ab)=3011.4 \text{ J}, \Gamma_p=0.323 \text{ KeV}, \Gamma_{\alpha}=0.010 \text{ KeV}.$ $E(n)(1ab)=3032.0.5 \Gamma_n=0.60 \text{ keV}$		
1120111-0	(2)			$J\pi$: 1 is also possible (1987WaZI).		
11289.6 5	1 +			$E(p)(lab)=3037.5 5, \Gamma_p=1.0 \text{ keV}.$		
11300.1 5	1+			$E(p)(lab)=3048.3 5, \Gamma_p=0.40 \text{ keV}.$		
11302.3 5	(1-)			$E(p)(lab)=3050.6 5, \Gamma_p=1.2 \text{ keV}.$		
11310.8.5	(0_)			$J\pi$: 2 is also possible (1987 waZi). E(p)(lab)=3068.5.5 Γ =1.8 keV		
11517.0 5	(0-)			$J\pi$: 1 is also possible (1987WaZI).		
11321.8 5#	2+#			$E(p)(lab)=3070.5 5$, $\Gamma_{p}=0.475$ keV, $\Gamma_{\alpha}=0.041$ keV.		
11329.1 5 ^b	2+			E(p)(lab)=3078.1 5.		
11330.5 5	1-			$E(p)(lab)=3079.5 5$, $\Gamma_p=4.0$ keV, $\Gamma_{\alpha}=0.030$ keV.		
11338.5 5	(1+)			$E(p)(lab)=3087.7 5, \Gamma_p=0.20 \text{ keV}.$		
11242 4 5	2			$J\pi$: 0,2 are also possible (1987WaZI).		
11342.4 3 11346 2 5	$\frac{2}{4(+)}$			E(p)(1ab)=3091.7 3, 1 $p=40$ KeV. $E(p)(1ab)=3095.6$ 5 $\Gamma = -0.020$ keV $\Gamma = -0.0005$ keV		
11351.3.5	-+(+) 1+			$E(p)(lab)=3100.8 5, \Gamma_{p}=0.020 \text{ keV}$		
11362.2 5	1+			$E(p)(lab)=3112.0 5, \Gamma_p=1.2 \text{ keV}.$		
11365.8 5 ^{#c}	2+#			E(p)(lab)=3115.7 5, Γ_p =0.090 keV, Γ_{α} =0.100 keV.		
11366.8 5	2-			$E(p)(lab)=3116.7 5$, $\Gamma_p=4.4$ keV.		
11368.1 5	4(+)			E(p)(lab)=3118.0 5, Γ_p =0.020 keV, Γ_{α} =0.0014 keV.		
11371.2 5	2+			E(p)(lab)=3121.2 5, Γ_p =1.4 keV, Γ_{α} =0.0040 keV.		

E(level) [†]	$J^{\pi\ddagger}$	L ^e	$(2J+1)\Gamma_p^2/\Gamma (\text{keV})^e$	Comments
11381.9.5#	2+#			$E(p)(lab)=3132.2.5, \Gamma_{p}=2.500 \text{ keV}, \Gamma_{\alpha}=0.065 \text{ keV}$
11392.8.5	1(-)			$E(p)(lab)=3143.4, 5, \Gamma_p=0.10 \text{ keV}, \Gamma_{\alpha}=0.0004 \text{ keV}$
11404.0.5	1-			$E(p)(lab)=3154.9.5, \Gamma_p=3.5 \text{ keV}, \Gamma_{\alpha}=0.0060 \text{ keV}$
11406.8.5	1+			$E(p)(lab)=3157.7.5$, $\Gamma_p=0.22$ keV.
11414.6.5	4+			$E(p)(lab)=3165.7.5, \Gamma_p=0.22 \text{ keV}, \Gamma_{\alpha}=0.0050 \text{ keV}$
11420 1 5	3-			$E(p)(lab)=3171.4.5$ $\Gamma_{n}=0.30$ keV $\Gamma_{n}=0.0009$ keV
11432.5.5	1-			$E(p)(lab)=3184.1.5$, $\Gamma_p=0.30$ keV, $\Gamma_{\alpha}=0.0000$ keV
$11436.6.5^{\#}$	2+#			$E(p)(lab)=3188.3.5$ $\Gamma_{\mu}=0.200$ keV $\Gamma_{\mu}=0.0026$ keV
11447.0.5	1_			$E(p)(lab)=3100.5 5, \Gamma = 5.0 \text{ keV}, \Gamma = 0.34 \text{ keV}$
11451 2 5	1- 1+			$E(p)(lab)=3199.05, \Gamma_p=3.0 \text{ keV}$ $E(p)(lab)=3203.3.5, \Gamma_p=0.60 \text{ keV}$
11455.2.5	3_			$E(p)(1ab)=3205.5.5, T_p=0.00 \text{ keV}$ $E(n)(1ab)=3207.4.5, T_r=0.050 \text{ keV}$ $\Gamma_r=0.010 \text{ keV}$
11460.2.5#	2,#			$E(p)(lab)=3207.45, \Gamma_p=0.030 \text{ keV}, \Gamma_q=0.010 \text{ keV}$
11400.2 5	$\frac{2+}{2(\pm)}$			$E(p)(1ab)=3212.5 5, \Gamma = -0.026 \text{ keV}, \Gamma = -0.10 \text{ keV}$
11468 5 5	$\frac{2(+)}{2}$			$E(p)(lab)=3217.5, 5, 1_p=0.020 \text{ keV}, 1_{\alpha}=0.10 \text{ keV}.$
11408.5 5	∠- 1⊥			$E(p)(lab)=3221.0 \ 5, \ \Gamma = 0.30 \ keV$
11475.05 1148655°	0+			$E(p)(lab)=3232.4.5, T_p=0.50 \text{ keV}$ $E(p)(lab)=3239.5, T_p=0.10 \text{ keV}$ $E(p)(lab)=3239.5, T_p=0.10 \text{ keV}$
11489.4 5	0+ 1+			$E(p)(1ab)=3237.5 5, T_p=0.10 \text{ keV}$
11514 4 5#	1⊤ 2⊥#			$E(p)(lab)=2242.5$ 5, $\Gamma_p=0.40$ keV. $\Gamma_r=0.115$ keV
11515.0.5	$\frac{2\pm}{1()}$			$E(p)(lab) = 5208.1.5, T_p = 0.500 \text{ KeV}, T_{\alpha} = 0.115 \text{ KeV}.$
11515.0 5	1(-)			$E(p)(lab) = 3208.7 \ J, \Gamma_p = 4.2 \ \text{KeV}, \Gamma_{\alpha} = 0.050 \ \text{KeV}.$
11510.0 5	$\frac{2+}{2}$			$E(p)(lab) = 3272.0 \ 5, \ \Gamma = 0.70 \ \text{keV}$
11537.7 5	2-			$E(p)(lab)=3292.0 5, T_p=0.0 \text{ KeV}.$ $E(p)(lab)=3206.4.5, T_p=0.60 \text{ keV}, T_p=0.017 \text{ keV}.$
11542.0 5	(1+)			$E(p)(1ab)=3290.4 5, T_p=0.00 \text{ keV}$ $E(p)(1ab)=3297.9.5 T_r=0.00 \text{ keV}$
11545.5 5	$(1\pm)$			$L(p)(100) = 5277.75, 1_p = 0.70$ KeV. $L\pi$: 2 is also possible (1087WaZI)
11546.5.5	2_			$F(p)(l_{2}b)=3301.0.5$ $\Gamma = -18$ keV
11554.3.5	2- 1_			$E(p)(lab)=3300.05, \Gamma_{p}=10 \text{ keV}$ $E(p)(lab)=3300.05, \Gamma_{p}=35 \text{ keV}, \Gamma_{p}=0.60 \text{ keV}$
11558 0 5	(2_{\perp})			$E(p)(lab)=3313.75 \Gamma = 0.40 \text{ keV}$
11556.75	(2+)			$L(p)(1ab) = 5515.7 5, 1_p = 0.40 \text{ KeV}.$ I π : 1 is also possible (1987WaZI)
11563 3 5	(2_{-})			$F(n)(lab) = 3318.3.5 \Gamma = 0.40 \text{ keV}$
11505.5 5	(2-)			$L(p)(1ab) = 5516.5 \ 5, \ 1_p = 0.40 \ \text{KeV}.$ I π : 1 is also possible (1987WaZI)
11577 7 5	2_			$F(n)(lab)=3333.0.5$ $\Gamma_{-}=1.0$ keV
11577.8.5#	2 #			$E(p)(lab)=3333.05, T_p=1.0 \text{ keV}$ $E(p)(lab)=3333.15, T_p=0.180 \text{ keV}$ $E(p)(lab)=3333.15, T_p=0.180 \text{ keV}$
11577.85	∠⊤ 2_			$E(p)(1ab)=3340.9.5 \Gamma = 0.15 \text{ keV}$
11505.4 5	(2+)			$E(p)(lab)=3352.8.5, \Gamma = 0.30 \text{ keV}$
11577.0 5	(2+)			$I_{p}(\pi\sigma) = 5552.05$, $I_{p} = 0.50$ keV.
11602.1.5	2+			$F(n)(lab)=3358.0.5$ $\Gamma_{n}=0.30$ keV
11603.2.5#	2+#			$F(p)(lab) = 3359.1.5$ $\Gamma_{c} = 0.250$ keV $\Gamma_{c} = 0.030$ keV
11605.2.5	1_			$F(p)(lab)=3361.1.5$, $F_p=0.250$ keV, $F_q=0.050$ keV.
11610.9.5	1-			$E(p)(lab)=3367.1.5, \Gamma_p=12$ keV, $\Gamma_{\alpha}=0.16$ keV
11613.8.5	(2-)			$E(p)(lab)=3370.0 5$, $\Gamma_p=0.50$ keV.
1101010 0	(-)			$J\pi$: 1 is also possible (1987WaZI).
11628.3 5	(3+)			$E(p)(lab)=3384.9 5$, $\Gamma_{p}=0.70$ keV.
	(-)			$J\pi$: 2 is also possible (1987WaZI).
11628.9.5#	2+#			$E(p)(lab)=3385.5.5.5. \Gamma_{p}=0.070$ keV. $\Gamma_{\alpha}=0.015$ keV.
11637.9 5 ^c	1-			$E(p)(lab)=3394.8 5$, $\Gamma_{p}=0.080$ keV, $\Gamma_{q}=0.010$ keV.
11644.8 5	(2-)			$E(p)(lab)=3401.8 5$, $\Gamma_p=0.60$ keV.
	. /			$J\pi$: 1 is also possible (1987WaZI).
11646.7 5 [#]	2+#			$E(p)(lab)=3403.85$, $\Gamma_{p}=0.600$ keV, $\Gamma_{\alpha}=0.002$ keV.
				$\Gamma_n=0.20$ in 1987WaZI.
11650.6 5	2(+)			$E(p)(lab)=3407.8 5$, $\Gamma_p=0.10$ keV, $\Gamma_{\alpha}=0.080$ keV.
11652.0 5 ^b	3-			E(p)(lab)=3409.25.
11653 3 5#	2+#			$E(n)(lab)=3410.5.5$ $\Gamma_{n}=1.500$ keV $\Gamma_{n}=0.090$ keV
11655.55	1-			$E(n)(lab)=3419.05$ $\Gamma_n=0.060$ keV $\Gamma_n=1.5$ keV
11672.6 5	(2-)			$E(p)(lab)=3430.45$, $\Gamma_p=0.20$ keV.
	(-)			$J\pi$: 1 is also possible (1987WaZI).
11676.9.5#	2+#			$E(p)(lab)=3434.7.5$, $\Gamma_{p}=0.180$ keV, $\Gamma_{w}=0.775$ keV
11687.3 5	(1+)			$E(p)(lab)=3445.45$, $\Gamma_p=0.50$ keV.
	~ /			$J\pi$: 0 is also possible (1987WaZI).

E(level) [†]	$J^{\pi\ddagger}$	L ^e	$(2J+1)\Gamma_p^2/\Gamma (\text{keV})^e$	Comments
11689.0 5	(2-)			$E(p)(lab)=3447.2$ 5. $\Gamma_{p}=0.60$ keV.
				$J\pi$: 1 is also possible (1987WaZI).
11692.6 5	4(+)			$E(p)(lab)=3450.9$ 5, $\Gamma_{p}=0.012$ keV, $\Gamma_{\alpha}=0.0090$ keV.
11696.1.5	0(-)			$E(p)(lab)=3454.5.5, \Gamma_{p}=0.60 \text{ keV}.$
11703.4.5	0+			$E(p)(lab)=3461.9.5$, $\Gamma_p=4.5$ keV. $\Gamma_{\alpha}=0.15$ keV.
11704.4.5	2-			$F(n)(lab)=3463.0.5$ $\Gamma_{n}=3.0$ keV
11707.6.5	1-			$F(p)(lab)=3466.3.5$ $\Gamma_{1}=0.30$ keV $\Gamma_{2}=0.0020$ keV
11713.4.5	1_			$E(p)(lab)=34702.5$, $\Gamma_p=0.30$ keV $F(p)(lab)=3472.2.5$, $\Gamma_n=0.20$ keV
11715.5.5	2_			$E(p)(1ab)=3474.4.5, \Gamma = 1.5 \text{ keV}$
11721.0.5	2- 1_			$E(p)(1ab)=3480.0.5$, $\Gamma_p=1.5$ keV $E(p)(1ab)=3480.0.5$, $\Gamma_p=1.5$ keV
11723.0.5	1⊤ 3(_)			$E(p)(1ab)=3483.8.5, \Gamma = -0.050 \text{ keV}, \Gamma = -0.010 \text{ keV}$
11720.8.5	3(-)			$E(p)(lab)=3400.4.5$, $\Gamma_p=0.050$ keV, $\Gamma_{\alpha}=0.010$ keV. $E(p)(lab)=3400.4.5$, $\Gamma_p=0.64$ keV, $\Gamma_{\alpha}=0.010$ keV.
11730.0 5	1(-)			$E(p)(1ab) = 3490.4 5, T_p = 0.04 \text{ KeV}, T_{\alpha} = 5.0 \text{ KeV}.$
11730.9 5	1+			$E(p)(lab)=2408.2.5$, $\Gamma_p=0.40$ KeV.
11730.0 5	2-			$E(p)(1ab) = 5496.2 \ J, T_p = 5.0 \ KeV.$
11742.0 5	2+"			$E(p)(1ab) = 3502.1 \ 3, \ 1_p = 0.750 \ \text{kev}, \ 1_{\alpha} = 0.520 \ \text{kev}.$
11/44.4 5	4+			$E(p)(lab)=3504.8$ 5, $I_p=0.050$ keV, $I_{\alpha}=0.50$ keV.
11540.0.5				$J\pi$: 2+ in 198/WaZI; later corrected to 4+ by the same group.
11/49.3 5	1(-)			$E(p)(lab)=3509.7 5$, $\Gamma_p=0.70$ keV, $\Gamma_{\alpha}=2.5$ keV.
11753.2 5 ^b	2-			E(p)(lab)=3513.1 5.
11753.8 5	3-			E(p)(lab)=3513.7 5, Γ_p =0.30 keV, Γ_{α} =0.050 keV.
				$J\pi$: 1- in 1987WaZI, later corrected to 3- by the same group.
11757.1 5	1 +			E(p)(lab)=3517.4 5, Γ_p =0.60 keV.
11767.8 5	2-			E(p)(lab)=3528.2 5, $\Gamma_p=15$ keV.
11782.4 5	3(-)			E(p)(lab)=3543.5 5, Γ_p =0.021 keV, Γ_{α} =0.020 keV.
11788.3 <i>5</i> [#]	2+#			E(p)(lab)=3549.0 5, Γ_p =2.200 keV, Γ_{α} =0.340 keV.
11792.2 5	1 +			$E(p)(lab)=3553.5 5, \Gamma_p=0.46 \text{ keV}.$
11799.0 5	4(+)			$E(p)(lab)=3560.2 5$, $\Gamma_p=0.010$ keV, $\Gamma_{\alpha}=0.17$ keV.
11803.9 5 ^c	0+			$E(p)(lab)=3565.3 5$, $\Gamma_p=0.060$ keV, $\Gamma_{\alpha}=0.20$ keV.
11808.8 5	(1+)			$E(p)(lab)=3570.2 5$, $\Gamma_p=1.1$ keV.
				$J\pi$: 2 is also possible (1987WaZI).
11810.7.5#	2+#			$E(p)(lab)=3572.0.5$, $\Gamma_{p}=0.770$ keV, $\Gamma_{q}=0.975$ keV.
11811.4.5	3-			$E(p)(lab)=3572.7.5$ $\Gamma_{r}=0.26$ keV $\Gamma_{rr}=0.0020$ keV
11820.4.5	3-			$E(p)(lab)=3581.9.5, \Gamma_p=0.20 \text{ keV}, \Gamma_u=0.030 \text{ keV}$
11020110	5			$I\pi$: 1- in 1987WaZI: later corrected to 3- by the same group
11830 6 5 ^{#c}	2_#			$F(p)(1sb)=3502.4.5$ $\Gamma = -0.070$ keV $\Gamma_{m}=0.230$ keV
11830.0 5	2+ 0+			$E(p)(1ab)=3601.0.5, \Gamma_p=0.070 \text{ KeV}, \Gamma_q=0.250 \text{ KeV}$
118/3 0 5	1			$E(p)(lab)=3606.0.5, \Gamma_p=1.0 \text{ KeV}, \Gamma_{\alpha}=0.050 \text{ KeV}.$
11045.75	1⊤ 2⊥#			$E(p)(1ab) = 2619.0.5$, $\Gamma_p = 0.76$ KeV.
11855.0 5	2+ (1 +)			$E(p)(1ab) = 5018.0 \ S, \ \Gamma_p = 0.525 \ \text{kev}, \ \Gamma_{\alpha} = 0.000 \ \text{kev}.$
11857.1.5	(1+)			$E(p)(1ab)=3019.6 \text{ S}, 1_p=1.3 \text{ KeV}.$
11072 1 5	(2)			$J\pi$: 2 is also possible (1987 wazi).
11803.1 3	(3-)			$E(p)(1ab)=3023.7 3, 1_p=0.41 \text{ keV}, 1_{\alpha}=0.0080 \text{ keV}.$
1106455	$(0, \cdot)$			$J\pi$: 1 is also possible (1987 waZI).
11864.5 3	(0+)			$E(p)(lab)=362/.2 5, I_p=1.6 \text{ keV}.$
110.00 6 5	<i>(</i> 1)			$J\pi$: 1,2 are also possible (198/WaZI).
11868.6 5	(4+)			$E(p)(lab)=3631.4$ 5, $\Gamma_p=0.030$ keV, $\Gamma_{\alpha}=0.0020$ keV.
110.00 0 50	2			$J\pi$: 2 is also possible (1987/WaZI).
11869.8 5°	3-			$E(p)(lab)=3632.6 \text{ 5}, \Gamma_p=0.010 \text{ keV}, \Gamma_{\alpha}=0.030 \text{ keV}.$
				$J\pi$: 2+ in 1987WaZI, later corrected to 3- by the same group.
11872.0 5#	2+#			E(p)(lab)=3634.8 5, Γ_p =0.450 keV, Γ_{α} =0.420 keV.
11877.8 5	1-			E(p)(lab)=3640.8 5, Γ_p =0.30 keV, Γ_{α} =0.015 keV.
11884.3 5	1 +			E(p)(lab)=3647.5 5, Γ_p =0.80 keV.
11888.1 5	4+			E(p)(lab)=3651.4 5, Γ_p =0.10 keV, Γ_{α} =0.025 keV.
11890.7 5	1-			$E(p)(lab)=3654.0 5, \Gamma_p=20 \text{ keV}.$
11893.8 5	(2-)			$E(p)(lab)=3657.2 \ 5, \ \Gamma_p=1.0 \ keV.$
				$J\pi$: 1 is also possible (1987WaZI).
11901.2 5	1+			$E(p)(lab)=3664.8 5$, $\Gamma_p=0.70$ keV.
11915.7 5	3-			$E(p)(lab)=3679.7 5, \Gamma_{p}=1.0 \text{ keV}, \Gamma_{\alpha}=0.0040 \text{ keV}.$
11924.4 5#	2+#			$E(p)(lab)=3688.6 5, \Gamma_p=2.200 \text{ keV}, \Gamma_{\alpha}=0.002 \text{ keV}.$
				A CALL A

$E(level)^{\dagger}$	$J^{\pi \ddagger}$	L ^e	$(2J+1)\Gamma_p^2/\Gamma (\text{keV})^e$	Comments
11929 8 5	4(+)	_		$E(p)(lab)=3694.2.5$ $\Gamma_{n}=0.030$ keV $\Gamma_{n}=0.0015$ keV
11933 1 5	1-			$F(n)(lab)=3697.5.5$ $\Gamma_{n}=16$ keV $\Gamma_{n}=0.074$ keV
11934.8.5	1			$E(p)(1ab)=3609.3.5, \Gamma_p=10.000, V$
11937 1 5	2_			$E(p)(1ab)=3701.6.5, \Gamma = 0.60 \text{ keV}$
11040.2.5	2-			E(p)(lab)=3701.0, 5, 1, p=0.00 KeV.
11940.2 J	1+			$E(p)(1ab) = 5704.0 \ J, 1_p = 0.40 \ KeV.$
11942.0 J	3- 1			$E(p)(lab) = 5707.5 \ J, \ l_p = 0.48 \ \text{kev}, \ l_{\alpha} = 0.0090 \ \text{kev}.$
11944.8 J	1-			$E(p)(1ab) = 5709.5 \ J, T_p = 0.40 \ \text{kev}, T_{\alpha} = 0.0080 \ \text{kev}.$
11948.2.5	(2^+)			$E(p)(1ab)=3/13.0$ 5, $\Gamma_p=0.30$ keV, $\Gamma_{\alpha}=0.010$ keV.
11958.5 5	(2+)			$E(p)(Iab)=3/23.6 \text{ S}, I_p=1.0 \text{ keV}, I_{\alpha}=0.0050 \text{ keV}.$
110 (0 5 5 5	0			$J\pi$: 1 is also possible (198/WaZI).
11962.7 5	0+			$E(p)(lab)=3727.9$ 5, $I_p=0.30$ keV, $I_{\alpha}=0.0060$ keV.
11969.6 5	1+			$E(p)(lab)=3735.0 5, \Gamma_p=0.80 \text{ keV}.$
11970.8 <i>5</i> [#]	2+#			E(p)(lab)=3736.2 5, Γ_p =0.240 keV, Γ_{α} =0.018 keV.
11974.9 5 ^c	1-			E(p)(lab)=3740.4 5, Γ_p =0.040 keV, Γ_{α} =0.015 keV.
11983.1 5	(2-)			$E(p)(lab)=3748.8 5, \Gamma_p=1.6 \text{ keV}.$
				$J\pi$: 1 is also possible (1987WaZI).
11986.9 5	3-			E(p)(lab)=3752.7 5, Γ_p =0.30 keV, Γ_{α} =0.080 keV.
11993.8 5	0-			$E(p)(lab)=3759.8 5$, $\Gamma_p=3.0$ keV.
12001.1 5	(2+)			$E(p)(lab)=3767.3 5$, $\Gamma_{p}=1.0$ keV, $\Gamma_{\alpha}=0.020$ keV.
	. ,			$J\pi$: 1 is also possible (1987WaZI).
12007.2 5	1+			$E(p)(lab)=3773.5 5$, $\Gamma_{p}=0.55$ keV.
12010.2.5	2-			$E(p)(lab)=3776.6.5$, $\Gamma_{p}=6.0$ keV
$12012.0.5^{c}$	$\frac{-}{4+}$			$E(p)(lab)=3778.5.5$ $\Gamma_{p}=0.010$ keV $\Gamma_{\alpha}=0.0006$ keV
12023 4 5	1+			$E(p)(lab)=3790.2.5$, $\Gamma_p=0.90$ keV
12025.4 5	4+			$E(p)(1ab)=3793.5.5$, $\Gamma_p=0.20$ keV, $\Gamma_n=0.018$ keV
12020.7 5	3_			$E(p)(1ab)=3800.6.5$, $\Gamma = -0.30$ keV, $\Gamma = -0.0050$ keV
12035.0 5)- 2⊥			$E(p)(1ab)=3814.9.5 \Gamma = 2.5 \text{ keV} \Gamma = 0.15 \text{ keV}$
12047.5 5	2T 1			$E(p)(lab)=2822.9, 5, \Gamma_p=2.0 \text{ keV}, \Gamma_{\alpha}=0.15 \text{ keV}.$
12030.2 5	1-			$E(p)(lab) = 3023.0 \ J, \ I_p = 2.0 \ KeV.$ $E(p)(lab) = 2826.4 \ S, \ \Gamma_p = 1.1 \ keV. \ \Gamma_p = 0.10 \ keV.$
12036.7 5	2+			$E(p)(lab) = 5620.4 \text{ J}, 1_p = 1.1 \text{ KeV}, 1_{\alpha} = 0.10 \text{ KeV}.$
12067.1 5	2+ 4 :			$E(p)(1ab) = 3835.0 \ S, \ I_p = 1.0 \ \text{keV}, \ I_{\alpha} = 0.15 \ \text{keV}.$
12007.0 3	4+			$E(p)(1ab)=3835.5 \ 5, \ 1_p=1.1 \ \text{kev}, \ 1_{\alpha}=0.01 \ \text{kev}.$
				$J\pi$: 2+ in 198/wazl; later corrected to 4+ by the same group.
				I_a of 0.10 listed in 198/WaZI was later corrected to 0.01 by the same
i a cara a sa				group.
12076.6 50	2-			$E(p)(lab)=3844.75, \Gamma_p=3.0 \text{ keV}, \Gamma_{\alpha}=0.070 \text{ keV}.$
12081.8 5	4(+)			$E(p)(lab)=3850.15, 1_p=0.020 \text{ keV}, 1_{\alpha}=0.001 \text{ keV}.$
12085.9 5	4(+)			$E(p)(lab)=3854.3 5$, $\Gamma_p=0.010$ keV, $\Gamma_{\alpha}=0.001$ keV.
12088.6 5	2-			$E(p)(lab)=3857.0 5$, $\Gamma_p=10.0$ keV.
12089.6 5	2+			E(p)(lab)=3858.0 5, Γ_p =4.2 keV, Γ_{α} =20 keV.
12092.9 5	4(+)			E(p)(lab)=3861.4 5, Γ_p =0.030 keV, Γ_{α} =0.030 keV.
12094.9 5	2+			E(p)(lab)=3863.5 5, Γ_p =9.0 keV, Γ_{α} =0.40 keV.
12105.8 5	4(+)			E(p)(lab)=3874.7 5, Γ_p =0.050 keV, Γ_{α} =0.040 keV.
12110.5 5	2+			$E(p)(lab)=3879.5 5, \Gamma_p=2.0 \text{ keV}.$
12114.9 5	3-			E(p)(lab)=3884.0 5, Γ_p =0.60 keV, Γ_{α} =0.18 keV.
12125.7 5	(3+)			$E(p)(lab)=3895.1 5, \Gamma_p=1.0 \text{ keV}.$
				$J\pi$: 2 is also possible (1987WaZI).
12132.5 5	(4+)			$E(p)(lab)=3902.1 5$, $\Gamma_p=0.060$ keV, $\Gamma_{\alpha}=0.070$ keV.
				$J\pi$: 2 is also possible (1987WaZI).
12134.7 5	(4+)			$E(p)(lab)=3904.3 5$, $\Gamma_{p}=0.10$ keV, $\Gamma_{q}=0.0030$ keV.
				$J\pi$: 2 is also possible (1987WaZI).
12141 1 5#	2+#			$F(n)(lab) = 3910.8.5$ $\Gamma_{} = 1.00$ keV $\Gamma_{} = 0.240$ keV
12152 1 5	2 · 4+			$F(n)(lab) = 3972.2.5$ $\Gamma_{} = -0.33$ keV $\Gamma_{} = -0.025$ keV
12152.15	$\overline{A(\pm)}$			$E(p)(1ab) = 3922.2.3.5 \Gamma = 0.030 \text{ keV} \Gamma = 0.040 \text{ keV}$
12157.0 5	+(+)			$E(p)(1ab) = 3927.0 5.5 \Gamma = -0.080 \text{ keV} \Gamma = -0.020 \text{ keV}$
12137.3 3	4(+) 1()			$E(p)(1ab) = 3929.5 J, 1_p = 0.000 \text{ KeV}, 1_{\alpha} = 0.0000 \text{ KeV}.$ $E(p)(1ab) = 3048.2.5 \Gamma = -0.20 \text{ keV} \Gamma = -0.020 \text{ keV}.$
12177.3 3	2			$E(p)(1ab) = 3946.2 J, 1_p = 0.20 \text{ KeV}, 1_{\alpha} = 0.020 \text{ KeV}.$
12180.0 3	2+			$E(p)(1ab) = 3950.8 \ J, 1_p = 1.4 \ KeV, 1_{\alpha} = 0.10 \ KeV.$
12184.3 5	2-			$E(p)(1ab)=3955.2 \text{ 5}, 1_p=2.0 \text{ keV}.$
12192.6 5#	2+"			E(p)(lab)=3963.6 5, Γ_p =1.00 keV, Γ_{α} =0.240 keV.

E(level) [†]	$J^{\pi \ddagger}$	L ^e	$(2J+1)\Gamma_p^2/\Gamma (\text{keV})^e$	Comments
12196.1 5	1(-)			$E(p)(lab)=3967.3 5$, $\Gamma_{p}=0.80$ keV, $\Gamma_{\alpha}=0.15$ keV.
12201.0 5	3-			$E(p)(lab)=3972.3 5$, $\Gamma_p=2.0 \text{ keV}$, $\Gamma_{\alpha}=0.080 \text{ keV}$.
12209.1 5	0-			$E(p)(lab)=3980.6 5, \Gamma_p=1.0 \text{ keV}.$
12211.7 5 ^c	4+			$E(p)(lab)=3983.3 5$, $\Gamma_p=0.020$ keV, $\Gamma_{\alpha}=0.0090$ keV.
12217.5 5	1 +			$E(p)(lab)=3989.2 5$, $\Gamma_p=1.5$ keV.
12224.1 5	1-			E(p)(lab)=3996.0 5, Γ_p =1.4 keV, Γ_{α} =0.060 keV.
12226.3 5#	2+#			E(p)(lab)=3998.2 5, Γ_p =0.425 keV, Γ_{α} =0.009 keV.
12237.6 5	1 +			E(p)(lab)=4009.8 5, Γ_p =2.0 keV.
12243.8 5	4+			E(p)(lab)=4016.2 5, Γ_p =0.020 keV, Γ_{α} =0.010 keV.
12245.1 5	1-			E(p)(lab)=4017.5 5, Γ_p =1.0 keV, Γ_{α} =1.0 keV.
12256 4^d				E(p)(lab)=4029 4; Γ =5.5 keV.
12270 4 ^d	(2+)			E(p)(lab)=4043 4; Γ =5.8 keV.
12280 4 ^d				$E(p)(lab)=4053 4; \Gamma=4.2 \text{ keV}.$
12292 4 ^d				$E(p)(lab)=4066 4; \Gamma=4.0 \text{ keV}.$
12299 4 ^d	(2+)			$E(p)(lab)=4073 4; \Gamma=4.0 \text{ keV}.$
12305 4 ^d	(1-)			$E(p)(lab)=4079 4; \Gamma=6.7 \text{ keV}.$
12331 4 ^d	2+			$E(p)(lab)=4106 4; \Gamma=7.3 \text{ keV}.$
12348 4 ^d				$E(p)(lab)=4123 4; \Gamma=6.0 \text{ keV}.$
12357 4 ^d	(31-)			$E(p)(lab)=4132$ 4: $\Gamma=5.5$ keV.
12368 4 ^d				$E(p)(lab)=4143$ 4: $\Gamma=6.7$ keV.
12376 4 ^d				$E(p)(lab)=4152$ 4: $\Gamma=5.9$ keV.
12381 4 ^d				$E(p)(lab)=4157$ 4: $\Gamma=4.0$ keV.
12399 4 ^d	(2+.1-)			$E(p)(lab)=4175$ 4: $\Gamma=6.7$ keV.
12406 4^d				$E(p)(lab)=4182$ 4: $\Gamma=3.5$ keV.
12411 4 ^d				$E(p)(lab)=4188 4$; $\Gamma=4.0$ keV.
12419 4 ^d				$E(p)(lab)=4195$ 4: $\Gamma=5.4$ keV.
$12425 \ 4^d$				$E(p)(lab)=4202.4$; $\Gamma=6.4$ keV.
14370@				E(p)(lab)=6350
14460@				E(p)(lab)=6440
14530@				E(p)(lab)=6520
14600 [@]				E(p)(lab)=6590
1/680@				$E(p)(l_{2}h) = 6660$
17000				L(P)(100)-0000.

[†] E(p)(c.m.)+S(p)(⁴⁰Ca), where S(p)=8328.23 *9* (2003Au03), E(p)(c.m.)≈E(p)(lab)(39/40). The E(p)(lab) values are from 1987WaZI, unless otherwise stated, and are given under comments. The proton and α Γ parameters are given under comments. For other relevant parameters see 1987WaZI and 1990Bu02. Resonances listed at E(p)(lab)=2740.6 and 2764.6 by 1987WaZI were later deleted by the by the same group. Uncertainty for E(p)(lab) is assigned here as 0.5 keV (same as FWHM), but the relative uncertainty is expected to be much smaller, probably ≈0.1 keV.

[‡] From 1987WaZI, unless otherwise stated. When $J\pi$ given in parentheses, other less likely spin(s) which give similar fits are given in comments. When parity appears in parentheses, resonance is too weak in (p,p) to determine parity unambiguously.

[#] From 1990Bu02. See also 1987WaZI from the same group. The Γ_p and Γ_{α} values are also given in 1987WaZI.

- $^{@}$ From 1969Va14 only from p_1 and p_4 channels.
- [&] From 1970De30.
- ^{*a*} Resonance reported by 1970De30 also.
- ^b Not listed in 1987WaZI, but added later by the same group.
- ^c 1987WaZI state that resonance does not appear in (p,p_0) . It probably corresponds to (p,p_1) .
- ^d From 1974Na09.
- ^e From 1970De30.
- ^f For 9602.5+9604.5.

39 K(d,n) 1969Fu01

$J\pi(^{39}K \text{ g.s.})=3/2+.$ 1969Fu01: E=6 MeV; measured $\sigma(\theta)$, tof.

Others:.

0

8664 12

8757 12 8860 12

8931 12

8987 12 9137 12

9228 12

9408 12

1

1

1

1

1

(0)-

(2)-

0.14

0.11

0.17

0.16

0.57

1967Ba38: E=2.9-6.2 MeV. Measured $\sigma(\theta)$ for g.s.

2000El08: E=0.7-3.4 MeV. Measured yield from γ -ray data.

⁴⁰Ca Levels E(level)[†] $J^{\pi \ddagger}$ ${{\mathbb G}_L}^{\#}$ Comments L 2 0 +0.84 ≤ 0.09 3353 0 +(2)3737 0.44 3 3-1 + 3S: for L=3; 0.02 for L=1. S=0.02 for L=1, 0.50 4 for L=3. 3904 2 +(2) < 0.124491 0.93 13 5-S=0.68 10. 3 5614 3 1.06 11 S=0.94. 4-5903 1-1(+3)0.02 S: <0.05 for L=3. S=0.05 for L=1. 6025 $0.12 \ 4$ 2-1 + 3S: for L=3; 0.037 for L=1. S=0.06 for L=1, 0.20 7 for L=3. 6285 3-1(+3)0.43 S: <0.3 for L=3. S=0.49 for L=1, \leq 0.3 for L=3. 0.14 6582 3-1(+3)S: ≤ 0.2 for L=3. S=0.16 for L=1, ≤ 0.2 for L=3. 6750 2-1 + 30.33 11 S: for L=3; 0.034 for L=1. S=0.05 for L=1, 0.53 18 for L=3. 6950 1-1(+3)0.17 S: ≤ 0.2 for L=3. S=0.45 for L=1. 7113 (3)-1(+3)0.18 S: ≤ 0.1 for L=3. S=0.21 for L=1, <0.1 for L=3. J π : 1- and 4- in Adopted Levels. 7532 (2)-1(+3)0.49 S: ≤ 0.1 for L=3. S=0.78 for L=1, \leq 0.2 for L=3. 7658 3 1.50 14 E(level): doublet: 7655+7676. S=0.69 7 for 7655, (4)-. $((2J_f+1)/(2J_i+1))S=3.0$ 3. 7694 (3)-1 0.05 S=0.82 8. $((2J_f+1)/(2J_i+1))S=0.10.$ 7972 1 0.04 8124 1 + 30.12 4 E(level): doublet: 8113+8135. S: for L=3; 0.025 for L=1. S=0.03 for L=1; 0.12 4 for L=3. 8186 0 8271 (0)-0.08 S=0.64. 1 J π : (\leq 3)- in Adopted Levels. 8371 (0)-1 0.08 S=0.64. J π : (0,1,2)- in Adopted Levels. 8424 (2)-1 + 30.36 11 S: for L=3; 0.01 for L=1. S=0.58 18 for L=3. $((2J_f+1)/(2J_i+1))S=0.02$ for L=1; ; 0.72 22 for L=3. 8551 (5)-3 0.98 12 S=0.71 9. $((2J_f+1)/(2J_i+1))S=1.96$ 24.

E(level): triplet: 9405+9412+9419.

J π : (6,7,8)- in Adopted Levels.

 $((2J_f+1)/(2J_i+1))S=0.32.$

S=0.88.

E(level) [†]	$J^{\pi \ddagger}$	L	${\rm G}_L^{\#}$	Comments
0421 12	(1)	1	0.22.2	S=0.43. S=0.35 for 9404, (3)- level with L=1. $((2J_f+1)/(2J_i+1))$ S=1.14 for 9404+9408.
9431 12	(1)-	1	0.22 3	E(level): doublet: 9430+9432. S=0.59. $((2J_f+1)/(2J_i+1))$ S=0.44 6 for 9433+9435.
9455 12		1	0.13	$((2J_f+1)/(2J_i+1))S=0.26.$
9533 12	(1)-	1	0.22	S=0.59.
				$((2J_f+1)/(2J_i+1))S=0.44$ for 9539+9540.
9601 12	(2)-	1	0.37	E(level): doublet: 9603+9605.
				S=0.59.
				J π : 1- and 3- in Adopted Levels.
9666 12		1	0.11	
10040 12	(0)-	1	0.05 1	S=0.44 8.
				$((2J_f+1)/(2J_i+1))S=0.11$ 2.
				E(level): from 1969Fu01. Several levels near this energy in Adopted Levels

 † Rounded-off values from Adopted Levels for levels below 8600.

[‡] From Adopted Levels up to 7 MeV; from 1969Fu01 above this energy where many groups are unresolved and it is difficult to find corresponding levels in Adopted Levels.

Transition strength $G_L = ((2J_f+1)/(2J_i+1))C^2S$, where J_f =spin of final state, J_i =target spin=3/2. The spectroscopic factors are given under comments. Uncertainty is less than 10%, when not stated. Absolute normalization uncertainty is 30%.

39 K(³He,d),(³He,d γ) 1966Er05,1967Se10,1973Te04

 $J\pi(^{39}K \text{ g.s.})=3/2+.$ 1966Er05: (³He,d) E=12 MeV. Measured $\sigma(\theta)$; deduced L, S.

1967Se10: E=12,14,16 MeV. Measured $\sigma(\theta)$ at E=14 MeV.

1973Te04 (also 1971Te02,1970Te01): (³He,dγ) E=18 MeV. Measured Eγ, Iγ, dγ coin.

1970Fo04: (³He,d) E=11 MeV. Measured $\sigma(\theta)$; deduced L, S.

1971Ca05: (³He,d) E=29.3 MeV. Measured $\sigma(\theta)$; deduced L, S.

1968Ba64: (³He,d), (³He,dγ) E=18 MeV. FWHM=60-80 keV for deuteron spectra. About 20 groups reported from (³He,d) and 3 levels in $({}^{3}\text{He},d\gamma)$.

1994Ve04: (³He,d) E=25 MeV. Measured $\sigma(\theta)$ for g.s.

				⁴⁰ Ca Levels
E(level) [†]	$J^{\pi\ddagger}$	L	(2J+1)S#	Comments
0	0+	2	6.5 6	
3353	0 +	(2)	0.4 2	S: <8% of g.s. (1967Se10).
3736.8 <i>3</i>	3-	3	4.0 4	L: 1966Er05 give also L=l with $(2J+1)S\approx 0.08$.
3904.8 <i>4</i>	2+	(2)	< 0.2	Strength<3% of g.s. (1967Se10).
4410^{b}				E(level): this group reported only by 1968Ba64 is suspect (evaluators);
				not included in Adopted Levels.
4491.6 5	5-	3	9.8 12	
5213°°				
5248 ^{&}				
5278 ^{&}				
5613.4 7	4-	3	8.2 12	
5903.9 10	1-	1	0.14 3	
6025.9 6	2-	3	1.5 4	L: 1967Se10 and 1966Er05 give L=l+3, with $(2J+1)S=0.2 I$ for L=1.
6284.8 7	3-	1	3.6 7	L: 1967Se10 give L=1+3 with $(2J+1)S \le 0.7$ for L=3.
6582.1 6	3-	1	1.3 2	
6751.1 8	2-	1	1.0 1	L: other: $L=3$, $(2J+1)S=1.9$ (19/1Ca05).
6928.3 25				E(level): possibly a close doublet (2-3 keV apart) according to
				19/3 1e04, since the Doppler shifts for the two γ 's barely overlap. Level
				not reported in any other ("He,d) experiment. T_ 1 (1652) Other: 210 fs 70 from 3100)
6052 8 15	1	1	123	$1_{1/2}$. 10527. Outer. 210 is 70 from 51907.
7115 2 7	1-	1	1.2.5	
7531 2 17	-+- 2_	1	1.0 2	I : 1967Se10 give $I = 1+3$ with $(2I+1)S=40$ for $I=3$
7658 5 17 [@]	2 4-	3a	$6.6 10^{a}$	E_{1}^{-1} E_{1}^{-1} E_{1}^{-1} E_{1}^{-1} E_{1}^{-1} E_{1}^{-1} E_{1}^{-1} E_{2}^{-1} E_{1}^{-1} E_{2}^{-1} $E_{$
7694 5 8 [@]	3-	3a	$65 10^{a}$	
8268 4	(0-)	5	0.5 10	E(level): from 1973Te04 Adopted $I\pi = (<3)$ -
8358.1 20	(0-)			E(level): from 1973TeO4. Adopted $J\pi = (0,1,2)$
8425 3 20	2-	3	377	E(level): according to $1973\text{Te}04$ this level is strongly fed in $({}^{3}\text{He d})$:
0120.0 20	-	5	5.1 7	probably corresponds to 8435.9 from 1967Se10
				L: 1967Se10.
8460 ^b				
8552.6 20	5-	3	11 2	
9140 <i>50</i>				E(level): from 1971Ca05 and 1968Ba64, presumably a multiplet.
9410 <i>50</i>				E(level): from 1971Ca05 and 1968Ba64, presumably a multiplet.
9700^{b}				
10050^{b}				
10380 ^b				
11200^{b}				

[†] The evaluators have used the best reference sources to determine as to which levels are populated in (³He,d), and then match these with the precisely known levels from $({}^{3}\text{He},d\gamma)$ (1973Te04). Weighted average taken from 1966Er05 and 1967Se10, when level energies are available from particle data only.

[‡] From Adopted Levels unless otherwise stated.

[#] Most papers quote S from (2J+1)S taking J from Adopted Levels. Values given here are (2J+1)S. Weighted averages have been taken of all available results. ^(a) 7659+7694 doublet in (³He,d) particle-transfer data.

& 0+, 2+, 4+ triplet with total strength <10% of g.s. (1967Se10).

^{*a*} L=3 with almost equal strengths for both components (1966Er05). 1967Se10 give L=1 for both states with (2J+1)S=5.5 for 7659 and 5.8 for 7696 levels. ^{*b*} From 1968Ba64 only.

	$\gamma^{(40}$ Ca)									
\mathbf{E}_{i}^{level}	\mathbf{J}_i^{π}	\mathbf{E}_{f}^{level}	$\mathbf{J}_f^{\boldsymbol{\pi}}$	E_{γ}	I_{γ}	Comments				
3736.8	3-	0	0+	3736.6 3	100					
3904.8	2+	0	0+	3904.6 4	100					
4491.6	5-	3736.8	3-	754.7 2	100					
5613.4	4-	4491.6	5-	1123.0 8	30					
		3736.8	3-	1876.5 4	70					
5903.9	1-	0	0+	5903.4 10	100					
6025.9	2-	3904.8	2+	2121.0 6	20					
		3736.8	3-	2289.0 <i>3</i>	80					
6284.8	3-	4491.6	5-	1793.1 2	70					
		3904.8	2+	2380.0 5	20					
		0	0+	6285	5	E_{γ} : from figure 2 of 1973Te04; not given in				
					100	authors' table I.				
6582.1	3-	3/36.8	3-	2845.1 3	100					
6751.1	2-	3904.8	2+	2848.4 10	15					
		3736.8	3-	3014.0 3	85					
6928.3		5278	-	1651.7 4	50					
		3736.8	3-	3190.0 15	50					
6952.8	1-	0	0+	6952.2 15	100					
7115.2	4-	5613.4	4-	1502	20	E_{γ} : from figure 2 of 1973Te04; not given authors'				
		4491 6	5-	2623 2 3	20	table 1.				
		3736.8	3-	3378 5 3	60					
7531.2	2-	5613.4	4-	1917.6 10	100					
7658 5	<u>-</u> 4-	5613.4	4-	2045 0 10	100					
7694.5	3-	3736.8	3-	3957.5.5	100					
8268	(0-)	6952.8	1-	1315	60					
	(3)	5903.9	1-	2364	40					
8358.1	(0-)	6952.8	1-	1405	>90					
8552.6	5-	4491.6	5-	4060.8 15	100					

40 Ca(γ, γ') 2002Ha13,1982Mo05

2002Ha13 (also 2001Ba66,2000Ha34,2000Zi04): E=9.9 MeV bremsstrahlung source. Measured E γ , I γ , $\gamma \gamma(\theta)$, strengths. Deduced widths. 1982Mo05 (also 1977SaYN): E=8.5, 11.3, 11.7 MeV bremsstrahlung source. Measured E γ , $\gamma(\theta)$, strengths.

Data for selected levels.

1987Gu01: E=9603.9, 9864.6, 9868.8, 10321.0 keV from 39 K(p, γ) resonances. Measured σ , E γ . Deduced widths for four levels.

1977La15: E=6.95 MeV from ¹⁹F(p, $\alpha\gamma$); measured σ , $\gamma(\theta)$ for two levels at 6914 and 6954.

1977La13: E=0.95 MeV from 19 F(p, $\alpha\gamma$); measured σ , $\gamma(\theta)$ for two levels at 6914 and 6954. 1968Me06: E=6.91, 6.95 MeV from 19 F(p, $\alpha\gamma$); measured σ , deduced spin and widths for 6910, 6950 levels. 1962Ra07, 1961Ec03: 39 K(p, γ) resonances as source to measure. Absorption lineshapes for 9866, 9869 doublet. 1961Ec03: E=10.3 MeV from 39 K(p, γ) resonances as source. Deduced widths for 10.3 MeV level. 1961De22: E=35 MeV bremstrahlung source; measured $\sigma(\theta)$ for E γ =17-23 MeV; deduced parameters for giant-dipole resonance. Other:.

1999Pr01: E=58, 74 MeV. Measured $\sigma(\theta)$. Deduced electromagnetic polarizability.

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$6421.2 \ 9$ 17 fs 4 $0.027 \ 7$ S: $0.050 \ eV \ 6 \ (1982Mo05)$. J π : 2+ (1982Mo05); but not definitive in 2002Ha13. $6908.2 \ 1$ 2+ 2.08 fs 35 $0.221 \ 36$ S: $0.190 \ eV \ 20 \ (1982Mo05)$, $0.13 \ eV \ 6 \ (1977La15)$, $0.18 \ eV \ 3 \ (1968Me06)$. $6949.9 \ 7$ 1- $0.90 \ fs \ 14$ $0.49 \ 7$ S: $0.450 \ eV \ 20 \ (1982Mo05)$, $0.41 \ eV \ 8 \ (1977La15)$, $0.47 \ eV \ 6$
$J\pi$: 2+ (1982Mo05); but not definitive in 2002Ha13.6908.2 I2+2.08 fs 350.221 36S: 0.190 eV 20 (1982Mo05), 0.13 eV 6 (1977La15), 0.18 eV 3 (1968Me06).6949.9 71-0.90 fs 140.49 7S: 0.450 eV 20 (1982Mo05), 0.41 eV 8 (1977La15), 0.47 eV 6
6908.2 I 2+ 2.08 fs 35 0.221 36 S: 0.190 eV 20 (1982Mo05), 0.13 eV 6 (1977La15), 0.18 eV 3 (1968Me06). 6949.9 7 1- 0.90 fs 14 0.49 7 S: 0.450 eV 20 (1982Mo05), 0.41 eV 8 (1977La15), 0.47 eV 6
(1968Me06). 6949.9 7 1- 0.90 fs 14 0.49 7 S: 0.450 eV 20 (1982Mo05), 0.41 eV 8 (1977La15), 0.47 eV 6
6949.97 1- 0.90 is 14 0.497 S: 0.450 eV 20 (1982M005), 0.41 eV 8 (1977La15), 0.47 eV 0
(1968Me06)
7871.9 I 2+ 2.6 fs 5 0.176 32 S: 0.190 eV $I7$ (1982Mo05).
8091.5 2 2+ 2.77 fs 28 0.166 16 S: 0.150 eV 10 (1982Mo05).
8110.9 6 1 18 fs 7 0.025 9 S: 0.012 eV 5 (1982Mo05).
J π : 1(-) in Adopted Levels.
8578.7 2 2+ 2.84 fs 28 0.161 13 S: 0.094 eV 12 (1982Mo05).
8749.4 2 2+ 5.2 fs 6 0.088 11 S: 0.065 eV 12 (1982Mo05).
8982.5 5 2+ 3.12 fs 35 0.148 15 S: 0.054 eV 10 (1982Mo05).
9603.9 0.19 keV 5 4.9 <i>18</i> All data from 1987Gu01.
9866.0 20 0.100 keV 24 3.6 15 E(level): from 1982Mo05. Other: 9864.6 (1987Gu01). $T_{1/2}$: from 1987Gu01. Other: 0.110 keV 30 (1962Ra07). Most of the Γ
is ascribed to proton decay (1962Ra07). S. from $1082M_005$ Other: 1.26 aV 25 (1062Ra07)
$\Gamma_{1}(\Gamma_{1}=0.0122)$ (from Adopted Lange)
9868.9 0.90 keV 21 0.80.26 $E(level)$: from 1987Gu01.
E from 1987Gu01, Other: 1.06 keV 20 (1962Ra07). Most of the width
is ascribed to proton decay (1962Ra07).
S: from 1962Ra07.
10318.0 20 1 26 eV 7 5.5 8 E(level): from 1982Mo05. Other: 10321.0 (1987Gu01). $J\pi$ =1+ in
S: from 1982Mo05. Others: 6.6 eV 8 (1987Gu01), 3.60 eV 24
(1961Ec03).
1 from 1982Mo05. Others: 91 eV 15 (1987Gu01), 10.3 eV 17 (1061E-02)
(1901ECO3). $\Gamma_{}=64 \text{ eV} 9 (1982Mo05) 4.5 \text{ eV} 6 (1961Ec03)$
$\Gamma_{\gamma}=0.4$ CV γ (190214003), 4.5 CV γ (19012003). $\Gamma_{\pi}=20$ eV 5 (1982Mo05) 5 8 eV 18 (1961Fc03)
$\Gamma_p=20.0003$, (1902)(1903), (1901)(003), $\Gamma_0/\Gamma=0.21.2$ (1982)Mo05)
20×10^3 E(level): giant-dipole resonance (1961De22)
$\Gamma_{\gamma}/\Gamma=0.0053, 0.0058 (1961De22).$

[†] From 2002Ha13, unless otherwise stated. Values available from 1982Mo05 are in general agreement with those from 2002Ha13.

[‡] From 2002Ha13 and 1982Mo05.

[#] In eV, from 2002Ha13, unless otherwise stated. Values available from 1982Mo05 are given under comments.

 $^{^{@}}$ From 2002Ha13, assuming $\Gamma{=}\Gamma_{0},$ unless otherwise stated.

γ ⁽⁴⁰ Ca)							
\mathbf{E}_{i}^{level}	\mathbf{J}_i^{π}	\mathbf{E}_{f}^{level}	$\mathbf{J}_f^{m{\pi}}$	E_{γ}	Mult.		
3904.0	2+	0	0+	3904.0 1			
5249.6		0	0 +	5249.6 <i>3</i>			
5628.9	2+	0	0 +	5628.9 2			
5902.5	1-	0	0 +	5902.5 2			
6421.2		0	0+	6421.2 9			
6908.2	2+	0	0+	6908.2 <i>1</i>			
6949.9	1-	0	0 +	6949.9 7			
7871.9	2+	0	0+	7871.9 <i>1</i>			
8091.5	2+	0	0+	8091.5 2			
8110.9	1	0	0+	8111.9 6			
8578.7	2+	0	0 +	8578.7 2			
8749.4	2+	0	0+	8749.4 2			
8982.5	2+	0	0+	8982.5 5	E2		
9603.9		0	0 +	9603.9			
9866.0		0	0+	9866.0 20			
9868.9		0	0+	9868.9			
10318.0	1	0	0+	10318 2			

⁴⁰Ca(e,e') 1982Bu05,1978Gr02,1970It01

Most measurements report $\sigma(\theta)$ distributions and deduce transition strengths for states excited in (e,e'). Other main references: 1995Pe01, 1984Ha29, 1984Og01, 1980St17, 1979Gr09, 1974Na15, 1973Ha13, 1971Fa15, 1971He08, 1970It01, 1970St10, 1969Ei03, 1968Zi06, 1964Ho06, 1963Bi04, 1963Ba19, 1961Pe21, 1956He83, 1956Ha91. 1982Bu05 (also 1982BuZR): E=31-65 MeV. ΔE(level)=50. 1978Gr02 (also 1978Gr03,1977Gr26): E=31-67 MeV. ΔE(level)=30. 1970It01: E=183, 250 MeV. ΔE(level)=100. 1970Go10: E=44-54 MeV. ΔE(level)=200; giant resonances. 1995Pe01: E=28.4, 34.9, 45.7, 54.6, 56.5 MeV. Data for 8 M1 levels and 5 M2 levels from 9870 to 13670. ΔE(level)=10. The authors also quote data for 18 levels from Darmstadt group (R. Benz, Diploma thesis 1984; W. Gross, Diploma thesis 1981; both from Darmstadt). 1984Og01: E=70-200 MeV. 1984Ha29: E=81.6-380 MeV. 3352 level studied. 1980St17: E=39 MeV. ΔE(level)=35. Data for 10319 level. 1979Gr09: E=44, 50 MeV. ΔE(level)=5. 1974Na15: E=700-750 MeV. Measured electron-proton coin; deduced proton-separation energies. 1973Ha13: E=66-121 MeV. 1971Fa15: E=39-56 MeV. 1971He08: E=198, 250, 300 MeV. 1970St10, 1968St20: E=28-60 MeV. Data for 0+ state. 1969Ei03: E=20-60 MeV. 1968Zi06: E=282.8 MeV. 1964Ho06: E=80-190 MeV. 1963B104: E=120, 150, 180, 220 MeV. 1961Pe21: E=120, 150, 180 MeV. 1956He83: E=187 MeV. Data for 3730 level. 1956Ha91: E=183 MeV. Data for 3730+3900 level. Others:. (e,e'): 2001Di23, 1986De12, 1985Me05 (also 1984Me06), 1983De25, 1981Fr03, 1978Zi04, 1975To02, 1968Fr11, 1964We08, 1962Ed02. (e,e): 1997Wi23, 1983Em01, 1979Si21, 1973Si15 (also 1971Si08, 1971SiYF). (e,e'p) and (e,e'α): giant resonances deduced: 2001Di24, 2001Di23, 1998Ko20, 1995Di03, 1994Vo05, 1976Mo17, 1973Ca14, 1971Mo06. (e,e'n): 1994Ta12.

⁴⁰Ca Levels

1963Bl04 give B(EL)(\downarrow), these have been converted to B(EL)(\uparrow).

E(level)	$\mathrm{J}^{\pi\dagger}$	Comments
0	0+	
3350	0+	Monopole matrix element=0.025 fm ² 4 (1978Gr02), 0.039 11 (1968St20). Form factor determined by 1984Ha29.
3730	3-	$\Gamma_0=5.4 \times 10^{-6}$ eV (1963Bl04), 15×10^{-6} eV 3 (1970St10). $\beta_3=0.066$ 7, B(E3)=0.010, G=7.4 (1963Bl04). Others: B(E3)=0.021 (1969Ei03), 0.0149 7 (1973Ha13). B(E3)(W.u.)=31.7 (1969Ei03), 27.3 10 (1970It01), 24.9 10 (1971He08), 22 2 (1973Ha13).
3900	2+	$\hat{\Gamma}_0 = 0.021 \text{ eV} (1963B104), 0.016 \text{ eV} 3 (1970St10).$ $\beta_2 = 0.016 5, B(E2) = 0.0144, G = 2.4 (1963B104). Others: B(E2) = 0.84 (1969Ei03), 0.90 10$ (1973Ha13), B(E2)(W.u.) = 2.0 (1969Ei03), 3.0 (1970It01), 2.00 20 (1973Ha13).
4490	5-	B(E5)(W.u.)=9.7 6, 17.7 15 (depending on shape factor) (1971He08); 18 4 (1970It01). $\beta_5=0.048$ 5, B(E5)=20.6×10 ⁻⁵ , G=2.0, $\Gamma_0=0.63\times10^{-6}$ eV (1963Bl04).
5250	2+	B(E2)(W.u.)=0.4 (1970It01).
5610 5920 <i>50</i>	2+	B(E2)(W.u.)=0.4 (1970It01). E(level): from 1970It01 and 1971Fa15.
6160	(3-)	$\beta_3 = 0.0048 \ I2$, B(E3)= 0.73×10^{-3} , G= $0.53 \ I3$, $\Gamma_0 = 13.3 \times 10^{-6}$ eV (1963B104).
6290	3-	B(E3)(W.u.)=4.6 4 (1970It01).
6590	3-	B(E3)(W.u.)=2.5 2 (1970It01).
6910	2+	E(level): from 1978Gr03. Other: 3- (1963Bl04). $\Gamma_0=0.190 \text{ eV } 6 \text{ (1978Gr03)}$
6951	1-	E(level): from 1978Gr03. $\Gamma_0=0.51 \text{ eV } 5 \text{ (1978Gr03)}.$

E(level)	$\mathrm{J}^{\pi\dagger}$	Comments
7100	(2+)	$J\pi$: from 1963Bl04.
		$\beta_{2}=0.018$ 2, B(E2)=0.0162, G=2.7 3, $\Gamma_{0}=0.47$ eV (1963Bl04).
7870	(2+,4+)	$J\pi$: from 1970It01; 4+ from 1963Bl04; 2+ in Adopted Levels.
		$\beta_4 = 0.011 \ 2 \ (1963B104)$. Other: B(E2)(W.u.)=1.3 or B(E4)(W.u.)=5 (1970It01).
8428 5	2-	E(level): from 1980St17.
		$\Gamma_0 = 0.026 \text{ eV} + 10-8 (1971\text{Fa15}).$
8500	5-	$J\pi$: from 1963Bl04. Other: 2+,5- (1970It01).
		(1963Bl04).
		$\beta_{5}=0.027$ 3, B(E5)=1.16×10 ⁻⁴ , G=1.1, $\Gamma_{0}=406\times10^{-13}$ eV (1963Bl04), Other:
		$B(E_2)(W_{III}) = 0.4 \text{ or } B(E_2)(W_{III}) = 7.0 (1970)It01)$
9868 5	1+	B(M1)=0.32 9 (1995Pe01), 0.43 4 (quoted by 1995Pe01 from Darmstadt group).
10319 5	1+	E(level): from 1979Gr09.
		B(M1)=1.06 8 (1995Pe01), 1.110 5 (quoted by 1995Pe01 from Darmstadt group).
10676	(2-)	B(M2)=0.16 5 (1995Pe01), 0.15 3 (quoted by 1995Pe01 from Darmstadt group).
10776 6	(1-)	E(level): from 1979Gr09: 3- in Adopted Levels.
11000	(3,4)	$J\pi$: from 1964Ho06.
11775	(1+)	B(M1)=0.35 3 (1995Pe01).
12044	(1+)	B(M1)=0.09 4 (1995Pe01).
	~ /	$J\pi$: 2- quoted by 1995Pe01 from Darmstadt group: 2+ in Adopted Levels
12200	3-	B(E3)(W.u.)=0.44 <i>3</i> (1964Ho06).
12332	(2-)	B(M2)=0.41 21 (1995Pe01).
		$J\pi$: (1-,2+) quoted by 1995Pe01 from Darmstadt group.
12488	(1+)	$B(M1)=0.10\ 2\ (1995Pe01).$
		$J\pi$: 2- quoted by 1995Pe01 from Darmstadt group.
12503	(2-)	B(M2)=0.17 5 (quoted by 1995Pe01 from Darmstadt group).
12622	(2)	B(M2)=0.19 7 (quoted by 1995Pe01 from Darmstadt group).
12749	(2-)	B(M2)=0.13 6 (1995Pe01), 0.06 6 (quoted by 1995Pe01 from Darmstadt group).
12830	(1+,2-)	B(M1)=0.14 3 (1995Pe01), 0.06 4 (quoted by 1995Pe01 from Darmstadt group).
		$J\pi$: 2- is less probable.
13049	(1+)	B(M1)=0.26 $\cancel{4}$ (1995Pe01), 0.25 2 (quoted by 1995Pe01 from Darmstadt group).
13147	(2-)	B(M2)=0.48 6 (1995Pe01), 0.34 9 (quoted by 1995Pe01 from Darmstadt group).
13445	(2-)	B(M2)=0.55 7 (quoted by 1995Pe01 from Darmstadt group).
13480	(1+)	$B(M1)=0.26 \ 10 \ (1995Pe01).$
		$J\pi$: 2-,(1+) quoted by 1995Pe01 from Darmstadt group.
13666	(2-)	B(M2)=0.66 16 (1995Pe01), 0.27 6 (quoted by 1995Pe01 from Darmstadt group).
13900	(2+)	B(E2)(W.u.)=0.18 2 (1964Ho06).
14600	(1,2+,3-,4+)	
18.4×10 ³ 16		Γ=9.9 MeV 14 (1974Na15).
$35.3 \times 10^3 5$		$\Gamma = 23.5 \text{ MeV} 2.3 (1974 \text{ Na}15).$
42.0×10^{3}		1 -2010 MOV 20 (177711010).
58.4×10^{3} 11		$\Gamma = 21.0 \text{ MeV} 11 (1074 \text{ No} 15)$
J0.4×10° 11		1 - 31.7 IVIEV 11 (17/41Val3).

[†] From Adopted Levels unless otherwise stated.

⁴⁰Ca($\pi^+,\pi^{+\prime}$),($\pi^-,\pi^{-\prime}$) 1981Mo17,1984Bo02,1982Bl09

Includes (π^+,π^+) and (π^-,π^-) .

1981Mo17: $E(\pi^+)$, $E(\pi^-)=180$ MeV. Measured $\sigma(\theta)$, DWIA analysis.

1982Bl09: $E(\pi^+)$, $E(\pi^-)=80$ MeV. Measured $\sigma(\theta)$, $\theta=50^\circ$ - 120°. Deduced GQR, DWBA analysis.

1984Bo02, 1981Bo26: $E(\pi+)$, $E(\pi^{-})=116$, 180, 292.5 MeV. Measured $\sigma(\theta)$, $\theta=20^{\circ} - 70^{\circ}$.

1977Mi19 (also 1978Mi05): $E(\pi +)=50$ MeV. Measured $\sigma(\theta)$, $\theta = 40^{\circ}$, 80° .

1978Eg03: $E(\pi+)=130$ MeV. Measured $\sigma(\theta)$.

1979Ar01: E(π+)=163, 261 MeV. Deduced GQR.

1984Ma42: $E(\pi^+)$, $E(\pi^-)$ =675.7 MeV. Measured $\sigma(\theta)$, DWBA analyses, deduced optical-model parameters.

1985Ul01: $E(\pi^+)$, $E(\pi^-)=135$ MeV. Measured $\sigma(\theta)$, deduced GQR, giant monopole and low-energy giant octupole resonances. (π^+,π^+), (π^-,π^-): $\sigma(\theta)$ and optical model parameters:. 1997Ka22 (672.5 MeV), 1988Wr01 (19.5,30 MeV), 1984Le01 (80 MeV), 1983Je01 (114-215 MeV), 1982Da13 and 1980DaZR

1997Ka22 (672.5 MeV), 1988Wr01 (19.5,30 MeV), 1984Le01 (80 MeV), 1983Je01 (114-215 MeV), 1982Da13 and 1980DaZR (64.8 MeV), 1981Gr09 (130,180,230 MeV), 1978In04 (115 MeV), 1978DrZS (isobar resonance energy), 1977Eg02 (130 MeV).

 (π^+,π^+) : $\sigma(\theta)$ and optical model parameters:.

1983Ob02 (20 MeV), 1981Pr03 (30,50 MeV), 1979Bl07 (40 MeV), 1976WaZB (145,174,204 MeV).

 (π^-,π^-) : $\sigma(\theta)$ and optical model parameters:

1997Ka22 (400 MeV), 1994Bu09 (40 MeV), 1990Se04 (30,50 MeV).

⁴⁰Ca Levels

E(level)	J^{π}	L†	$\beta_L(\pi-), \beta_L(\pi+)$	Comments
0	0+	0		
3350				
3740		3	0.56,0.5	S: from 1982B109.
3910		2		
4490		5	0.095,.081	
6275		3	0.085,.074	
6580		3	0.102,.122	
6700 [‡]				
11700 [‡]				
13400#		2#	0.11.2#	L=0 with $\beta_0=0.13.2$ is not excluded (1982Bl09)
17500#		2#	0.26#	$E=0 \text{with } p_0=0.15 E \text{ is not excluded (1)} (EB10)).$
17500		4	0.20	

[†] From 1984Bo02, 1982Bl09 and 1981Mo17.

[‡] From 1977Mi19.

[#] From 1982Bl09; from $(\pi^+, \pi^{+\prime})$.

40 Ca(n,n' γ) 1972Di10,1972Ni05,1984El12

1972Ni05: $(n,n'\gamma)$ E=fission spectrum. Measured E γ , branching. 1972Di10: $(n,n'\gamma)$ E=4.85-8.05 MeV. Measured E γ , σ at 6 different energies. 1984E112 (also 1989Ge09): $(n,n'\gamma)$ E=fast. Measured γ , lifetime by DSA. Others:.

1963Ho08: $(n,n'\gamma)$ E=14 MeV. Measured E γ .

0

	Differ Εγ	ential 4.85	cross MeV	sections 5.40 MeV	(in mb/sr) 5.90 MeV	at different 6.45 MeV	energies 7.00 MeV	(125°) 8.05
	755	0.55	10	1.20 15	1.3 2	2.6 <i>3</i>	3.2 <i>3</i>	4.1 4
	780						0.18 9	0.23 7
	1122				0.32 6	0.91 14	1.14 18	1.45 22
	1303		(0.70 <i>11</i>	0.95 14	1.51 20	1.31 <i>19</i>	1.04 15
	1345				0.41 8	0.33 5	0.28 4	0.39 11
	1374				1.3 2	2.33 25	2.9 3	2.7 3
	1651							0.66 11
	1793						0.91 22	1.09 <i>13</i>
	1877				0.42 8	0.81 9	0.69 13	0.75 <i>19</i>
	2124					0.70 15	1.15 15	1.10 15
	2288					1.70 20	2.7 4	2.6 4
	2380						0.22 11	0.70 15
	2605						0.64 22	2
	2854 3013							0.45 11
	3193 3737	9.8 <i>1</i>	0	9.8 10	8.0 12	10.1 <i>10</i>	12.6 <i>13</i>	14.4 <i>15</i>
	3905	12.6	13	9.6 10	8.6 <i>13</i>	9.7 10	10.5 <i>11</i>	8.79
	5249		(0.26 7	1.5 2	2.20 22	2.35 24	1.71 <i>18</i>
	5629				0.3 1	1.7 3	1.3 <i>3</i>	1.7 <i>3</i>
	5903					0.66 8	1.17 17	0.97 13
	6909							1.40 20
	6949							0.79 12
rel)	$J^{\pi \#} T_{1/2}$		Commer	nts				
	0+							

E(level)	$J^{\pi \#}$	$T_{1/2}$	Comments
3905	2+	36 fs 14	T _{1/2} : from DSAM (1984El12,1989Ge09).
4492	5-		-, -
5212	0 +		E(level): from 1972Ni05. Other: 5208 (1972Di10).
5249	2+		
5279	4+		
5614	4-		
5629	2+		
5903	1-		
6025	2-		
6029	3+		
6284	3-		
6510 [†]	4+		
6542 [†]	4+		
6582^{\dagger}	3-		
6750 [†]	2-		
6909†	2+		
6930†‡	6+		
6931 ^{†‡}	3-		
6949 [†]	1-		

[†] From 1972Di10 only.
[‡] According to Adopted Levels and gammas, 1651γ and 3193γ are from two separate levels near 6930, although 1972Di10 seem to show only one level.
[#] From Adopted Levels.

					γ ⁽⁴⁰ Ca)	
\mathbf{E}_{i}^{level}	\mathbf{J}_i^{π}	\mathbf{E}_{f}^{level}	$\mathbf{J}_f^{\pmb{\pi}}$	E_{γ}^{\dagger}	$d\sigma\!/\!d\Omega$ (mb/sr) at 125°.§	Comments
Unplaced				2275^{d}	0.50 13	
- I				2.748^{d}	0.72.16	
				3503 ^d	0.23.10	
3737	3-	0	0+	3737 2	12.5.73	
3905	2+	0	0^{+}	3905 2	10.0 11	
4492	5-	3737	3-	755 2	3.1 3	
5212	0+	3905	2+	1307 ^c	1.20 20	1303 in 1972Di10 includes a line from 40 K.
5249	2+	3905	2+	1345 2	0.61 15	$I\gamma(1344)/I\gamma(5249)=0.25$ (1972Ni05).
		3353	0 +	1897 2 ^a	0.16 8	
		0	0+	5249 2	2.23 25	
5279	4+	3905	2+	1374 2	2.6 3	May include contribution from ⁴⁰ K line.
5614	4-	4492	5-	1122 2	1.10 24	$I\gamma(1124)/I\gamma(1880)=0.43$ (1972Ni05).
		3737	3-	1877 2	0.63 10	
5629	2+	3353	0+	2275 2	0.50 13	Iγ(2277)/Iγ(5627)=0.10 (1972Ni05).
		0	0+	5629 2	1.05 15	Includes contribution from ¹⁶ O.
5903	1-	0	0+	5903 2	0.95 11	
6025	2-	3905	2+	2120 ^{cb}		E_{γ} : 2124 in 1972Di10 is probably a doublet
						2120+2124.
						$1\gamma(2120)/1\gamma(2290)=0.25$ (19/2N105).
<0 2 0	2	3/3/	3-	2288 2	2.7.5	Doublet 2288+2294.
6029	3+	5249	2+	780 2	0.20 6	$1\gamma(780)/1\gamma(2124)=0.13$ (1972Ni05).
		3905	2+	2124 2	1.09 15	L. (2204) (L. (2124) 0.10 (1072) (05)
		3/3/	3-	2294°		$1\gamma(2294)/1\gamma(2124)=0.10$ (19/2N105).
(201	2	4400	~	1702.2	0.75.10	2288γ in 1972D110 is a doublet $2288+2294$.
6284	3-	4492	5-	1/93 2	0.75 10	May include contribution from 10 K line.
6510	4 .	3905	2+	2580 2	0.60 23	$1\gamma(23/9)/1\gamma(1/93)=0.33$ (19/2N105).
6542	4+	5905	2+ 4 -	$2005 2^{a}$	0.43 22	
0342	4+	5219	4+	1202 Z ^a	0.3/12	

γ ⁽⁴⁰Ca) (continued)

\mathbf{E}_{i}^{level}	\mathbf{J}_i^{π}	\mathbf{E}_{f}^{level}	\mathbf{J}_{f}^{π}	$E_{\gamma}{}^{\dagger}$	$d\sigma/d\Omega$ (mb/sr) at 125°.§	Comments
6582	3-	3905	2+	2679 2 ^a	0.22 9	
6750	2-	3905	2+	2854 2 ^a	0.16 7	
		3737	3-	3013 2 ^a	0.74 14	
6909	2+	0	0 +	6909 2 ^a	1.02 17	
6930	6+	5279	4+	1651 2 ^a	0.50 10	
6931	3-	3737	3-	3193 2 ^a	0.55 10	
6949	1-	0	0+	6949 2 ^a	0.51 8	

[†] From 1972Di10, unless otherwise stated.
[§] From 1972Di10. Values for other neutron energies are listed in the table below.
^a γ from 1972Di10 only.
^b Transition from 1972Ni05 only.
^c From level-energy difference.
^d Tentative γ from 1972Di10 only.

⁴⁰Ca(n,n'),(pol n,n') 1990Ba49,1977Ba49,1986Ho05

(n,n') and (pol n,n') include (n,n) and (pol n,n).

1990Ol02: (n,n') E=21.6 MeV. Measured $\sigma(\theta)$ for g.s., 3737 and 4491 levels, deduced deformation parameters.

1977Ba49: (n,n') E=11, 20 MeV. Measured $\sigma(\theta)$; DWBA analysis.

1986Ho05, 1986De17 (also 1987HoZU): (n,n'), (pol n,n') E=11-17 MeV. Measured $\sigma(\theta)$, Ay(θ) for unresolved 3737+3904 c. levels.

Others:.

1989Ra06: (n,n) E=thermal. Measured bragg diffraction pattern, scattering lengths.

1988Is03: (n,n') E=18-60 MeV. Measured $\sigma(\theta)$.

1987Al03, 1987Al02 (also 1986AlZS): (n,n') E=21.7, 25.5 MeV; measured $\sigma(\theta)$.

1986Wi01: (n,n). Analyzed $\sigma(\theta)$.

1982To11: (pol n,n) E=9.9, 11.9, 13.9 MeV. Measured $\sigma(\theta)$, Ay(θ). Deduced optical-model parameters.

1981De21 (also 1980DeZO): (n,n) E=30.3, 40 MeV. Measured $\sigma(\theta)$.

1979Ja26: (n,n) E=2-3 MeV. Measured $\sigma(\theta)$.

1977Ra16, 1977Ra12: (n,n) E=11, 20, 26 MeV. Measured $\sigma(\theta)$.

1977Fe01: (n,n) E=11 MeV. Measured $\sigma(\theta)$.

1973Ba69: (n,n') E=3.52 MeV. Measured lifetime of 3353 level.

1973Wy03: (n,n'). Measured σ , deduced resonances.

1964Mc20: (n,n') E=14.1 MeV. Measured $\sigma(\theta)$.

1959Kl46: (n,n'), pulsed neutrons from ³H(p,n) reaction. Measured lifetime for 3353 level by detecting time decay of γ^{\pm} radiation.

					⁴⁰ Ca Levels
$E(\text{level})^{\dagger}$	$J^{\pi \ddagger}$	T _{1/2}	L	β_L	Comments
0	0+		_		
3353	0+	2.21 ns 10			$T_{1/2}$: weighted average of 2.35 ns 14 (1959Kl46) and 2.14 ns
					10 [′] (1973Ba69).
3737	3-		3	0.314 16	S: from 1990Ol02. Others: 0.359 21 (1977Ba49), 0.33
					(1987Al03).
3904	2+		2	0.096 10	S: from 1977Ba49. Other: 0.10 (1987Al03).
4491	5-		5	0.229 12	S: from 1990Ol02. Others: 0.26 4 (1977Ba49), 0.23
					(1987A103).

[†] Rounded-off energy from Adopted Levels.

[‡] From Adopted Levels.

⁴⁰Ca(p,p'),(pol p,p') 1975No04,1981Ej02,1987Ya11

1975No04: E=35.2 MeV. Measured σ , levels. 1981Ej02: E=65 MeV. Measured $\sigma(\theta)$, FWHM=11 keV, DWBA analysis. 1987Ya11: E=65.1 MeV. Measured $\sigma(\theta)$, DWBA analysis. Other references from which results are used in this dataset:. 1956Br98: E=7.17-8.00 MeV. 1964Ya02: E=55 MeV. 1965Gr11: E=14.6, 17.3 MeV. Measured $\sigma(\theta)$, deduced deformation parameters. 1968Wi05: E=155 MeV. Measured $\sigma(\theta)$, pol(θ), DWBA. 1970B103: E=20.3 MeV, pol p. Measured $\sigma(\theta)$, deduced deformation parameters. 1972Gr26: E=25, 30, 35, 40 MeV. Measured $\sigma(\theta)$. 1976Ka29: E=185 MeV. Measured $\sigma(\theta)$. 1976Al19: E=1.044 GeV. Measured $\sigma(\theta)$. 1982B110: E=800 MeV; pol p. Measured $\sigma(\theta)$, Ay(θ). Deduced deformation parameters. 1982Ho13 (also 1982Ho15): E=65 MeV; pol p. Measured $\sigma(\theta)$, Ay(θ), DWBA analysis. 1980Ad03: E=800 MeV, pol p. Measured $\sigma(\theta)$, Ay(θ). Deduced deformation parameters. DWBA analysis of known J π states. 1980Ca14: E=800 MeV. Measured $\sigma(\theta)$, deduced octupole giant resonance, DWBA analysis. 1981An08: E=201 MeV. Measured $\sigma(\theta)$, deduced M1 strength. 1985Ho14, 1984Ho16: E=334 MeV; pol p. Measured $\sigma(\theta)$, Ay(θ), DWIA analysis. 1985Se14: E=500 MeV; pol p. Measured $\sigma(\theta)$, Ay(θ). 1987Fr05: E=362 MeV; pol p. Measured $\sigma(\theta)$, Ay(θ). 1989Le04: E=362 MeV; pol p. Measured $\sigma(\theta)$, Ay(θ). 1993Se02: E=200 MeV; pol p. Measured $\sigma(\theta)$, Ay(θ). Others (p,p'):. 2000Ba18: E=319 MeV; pol p. Measured $\sigma(\theta)$, spin-flip probabilities. 1993Gr02: E=497, 581 MeV; pol p. Measured spin-flip observables. 1991Ke13: E=318 MeV; pol p. Measured $\sigma(\theta)$, Ay(θ). 1990Ba14: E=300, 800 MeV; pol p. Measured spin-flip probability. 1989Sa23: E=65 MeV. Measured $\sigma(\theta)$, FWHM=20-25 keV. 1989Ba55: E=319 MeV; pol p. Measured absolute $\sigma(\theta)$. 1989Ho11: E=500 MeV. Measured $\sigma(\theta)$. 1989Li15: E=500 MeV; pol p. Measured $\sigma(\theta)$, FWHM=70 keV. Deduced giant resonance (L=2,4) strengths. 1988Ba06: E=318 MeV; pol p. Measured $\sigma(\theta)$. 1987Gl02: E=319 MeV; pol p. Measured $\sigma(\theta)$, spin-flip probability. 1987Ba22: E=500 MeV; pol p. Measured $\sigma(\theta)$, Ay(θ), DWBA. 1986Aa01: E=500 MeV; pol p. Measured spin-rotation parameters. 1983Mi25: E=650 MeV; pol p. Measured $\sigma(\theta)$, DWIA analysis. 1982Ga02: E=800 MeV. Deduced deformation lengths. 1982Aa04: E=497 MeV; pol p. Measured proton depolarization tensor parameters. 1981Co08: E=31,32,35.5,40,42 MeV, pol p. Measured spin-flip probability. 1980Va10: E=60.3 MeV. Measured $\sigma(\theta)$, DWBA analysis. 1977Vo09: E=19 MeV. Measured $\sigma(\theta)$. 1977Ul01: E=7-10 MeV. Measured proton-pair coin. 1975Ma07: E=155 MeV. Measured $\sigma(\theta)$. 1974Pl02: E=20 MeV, pol p. Measured $\sigma(\theta)$, pol(θ). 1973Go42: E=20-25 MeV, pol p. Measured $\sigma(\theta)$, Ay(θ). 1972Co11: E=1 GeV. Measured $\sigma(\theta)$. 1970Wh06: E=5.8-6.6 MeV. Measured $\sigma(\theta)$. 1970Ka44: E=185 MeV. Measured $\sigma(\theta)$, deduced B(EL). 1970In03: E=185 MeV. Measured $\sigma(\theta)$, pol(θ) for first 3-. 1968Va27: E=6.28-6.73 MeV. Deduced IAR. 1968Ba64: E=13 MeV. FWHM=50 keV. About 25 groups reported. 1966Wa12: E=160 MeV. 1966Ma13: E=11.5 MeV. 1966Li02: E=155 MeV. Measured $\sigma(\theta)$. 1965Ru01: E=4.26 MeV. 1965Ha28: E=156 MeV. 1964St15: E=40 MeV. 1964Bo27: pol p. 1964Ti02:. 1963Ro30: E=150 MeV. 1963Ho26: E=155 MeV. 1962Va14: E=6.6 MeV.

Others: 1964Ti02, 1958Go90, 1955Be73. (p,p), (pol p,p): deduced optical-model parameters from $\sigma(\theta)$:. 1989Gr12: E=200 MeV; pol p. 1988Hu10: E=200, 300, 400, 500 MeV; pol p. 1988Ho05: E=497.5 MeV; pol p. 1988Le10: E=200, 362, 400 MeV; pol p. 1988Ot04: E=200, 500, 800 MeV; pol p. 1988B107: E=320, 400, 650 MeV; pol p. 1986Mc05: E=21-48.4 MeV. Measured $\sigma(\theta)$. 1986Fe01: E=800 MeV; pol p. 1983Ba05: E=800 MeV; pol p. 1982Sc17: E=80.2, 181.5 MeV; pol p. 1982Sa19 (also 1982Sa37): E=65 MeV; pol p. 1982Al18: E=1 GeV. 1981Ra21: E=497 MeV, pol p. 1981Ra02: E=800 MeV. 1981No07: E=65 MeV, pol p. 1981Na02: E=80.2, 135.1, 160 MeV. 1981Ho26: E=500 MeV, pol p. 1980Fa07: E=35.2 MeV. 1979Sa38: E=65 MeV, pol p. 1979Ig01: E=800 MeV, pol p. 1977Ch29: E=1 GeV. 1975Al08: E=1 GeV. 1974Pl05: E=20, 24.5 MeV, pol p. 1974Gu14: E=5-6 MeV. 1974Co09: E=156 MeV. 1973Be41: E=40 MeV, pol p. 1973Ba79: E=1 GeV. 1972Lo10: E=10.8-16.3 MeV. 1972Kl03: E=2.3-2.8 MeV, pol p. 1971Va09: E=10-180 MeV. 1971Hn02: E=30.3 MeV, pol p. 1971Di17: E=10-22 MeV. 1971Br22: E=21.0, 23.5, 26.3, 48.0 MeV. 1970Ma54: E=25, 30, 35, 40 MeV. 1969Fu07: E=61.4 MeV. 1968Pr16: E=6.3-6.9 MeV. 1967Gr19: E=35.8, 45.5 MeV. Level energy data: 1987Ya11, 1981Ej02, 1975No04, 1981An08, 1972Gr26, 1965Gr11.

L-transfers: 1972Gr26, 1993Se02, 1984Ho16, 1976Al19, 1976Ka29, 1970Bl03, 1965Gr11, 1964Ya02.

Jπ from (pol p,p'): 1993Se02, 1989Le04, 1987Fr05, 1985Ho14, 1982B110, 1982Ho13, 1968Wi05.

Differential cross sections at 15.4° in μ b/sr (from 1975No04) are listed under comments. 1975No04 give cross sections at 30.7° also. Both sets of data were normalized to cross section for 4492, 5- level as determined by 1972Gr26. The uncertainties are 10%, unless otherwise stated.

B(EL)(W.u.) values given under comments are from 1972Gr26.

Differential cross sections listed under comments are in μ b/sr, and taken from 1975No04.

				⁴⁰ Ca Levels
E(level) [†]	J^{π}	L	$\beta_L R^{\ddagger}$	Comments
0	0+	0		
3352.1 <i>3</i>	$0+^{c}$	0		L: from 1993Se02. $d\sigma/dQ=126 \ \mu b/sr$
3736.4	3-	3	1.39 ^e	$\beta_3=0.41$ (1985Se14). $J\pi$: from (pol p,p') (1968Wi05,1982Ho13,1982B110,1987Fr05,1989Le04). S: 1.35 (1972Gr26). B(E3)(W.u.)=28.7 20. Other $\beta_3=0.340$ (1982B110). $d\pi/d0=113200$ ub/cr (1077Gr26).
3904.1	2+	2	0.52 ^e	$\beta_2 = 0.14$ (1985Se14). J π : from (pol p,p') (1987Fr05,1984Ho16).

$^{40}_{20}$ Ca₂₀-91

⁴⁰Ca Levels (continued)

$E(level)^{\dagger}$	J^{π}	L	$\beta_L R^{\ddagger}$	Comments
				S: 0.42 (1972Gr26), 0.43 (1984Ho16).
				Other $\beta_2 = 0.133$ (1982B110).
				$d\sigma/d\Omega = 2240$ (1972Gr26).
				B(E2)(W.u.)=2.05 20.
4491.5	5-	5	0.76^{e}	$J\pi$: from (pol p,p') (1987Fr05,1982B110).
				S: 0.83 (1972Gr26).
				Other $\beta_5=0.215$ (1982B110).
				$d\sigma/ds_{2}=1500 (19/2Gf_{2}6).$
5213.8.5				$d\sigma/dQ = 13.4$
5249.5	$2 \downarrow b$	2	0.12	$S: 0.11 (108/H_0.16)$
5247.5	21	2	0.12	$d\sigma/d\Omega = 575$
5279.3 <i>3</i>		4	0.14	$d\sigma/d\Omega = 122$.
5614.3		5	0.33	$d\sigma/d\Omega = 194.$
5630.1 <i>3</i>	$2+^{b}$	2	0.15 ^e	L: from 1984Ho16.
				S: 0.13 (1984Ho16).
				$d\sigma/d\Omega=248.$
				B(E2)(W.u.)=0.13 5.
5903.3 3	2	2	0.10	$d\sigma/d\Omega = 503.$
6026.2 3	2-	3	0.18	$J\pi$: from (pol p,p') (1982Ho13).
6285.8	3 _C	3	0 38e	$dO/d\Sigma = 208.$ S: 0.41 (1072Gr26)
0205.0	5-	5	0.50	$d\sigma/dO = 1471$
				B(E3)(W.u.)=3.1.3.
6422	2+	2	< 0.04	E(level): from 1984Ho16 only.
6508.4 <i>3</i>		4	0.18	$d\sigma/d\Omega = 114.$
6543.6 4				$d\sigma/d\Omega=32.$
6583.3 <i>3</i>	3- ^c	3	0.34 ^e	S: 0.33 (1972Gr26).
				$d\sigma/d\Omega = 975.$
(750.0.2	2	2	0.22	B(E3)(W.u.)=2.53 3.
0/50.9 3	2-	3	0.22	$J\pi$: from (poi p,p) (1982H013). $d\sigma/dQ = 410$
6000 1 3	$2 \downarrow b$	2	0.400	$S = 0.42 (1072)Gr26 (1084)H_{0}(16)$
0909.1 5	27	2	0.49	$d\sigma/d\Omega = 2316$
				$B(E_2)(W.u.)=2.25, 23.$
6931.8 <i>3</i>				$d\sigma/d\Omega = 190.$
6950.9 <i>4</i>				$d\sigma/d\Omega = 2457.$
7113.9 4		5	0.29	L: other: 3 (1965Gr11).
0				$d\sigma/d\Omega = 164.$
7240 <i>10</i> [∞]				$d\sigma/d\Omega < 10.$
7278.0 4		2	0.00	$d\sigma/d\Omega = 76.$
/300./ 5		2	0.09	$d\sigma/d\Omega = 25.4.$
7399 10~				$dO/dS_{2} < 10.$
7425 1 7447 1 6		4	0.16	$d\sigma/d\Omega = 33.5$
7466.2.6	$2 \perp^{b}$	2	< 0.10	I · from 1984Ho16
7400.2 0	21	2	<0.07	$d\sigma/d\Omega = 46$.
7532.5 5		(3)	0.17	E(level): 1972Gr26 did not resolve this level from 7561 but assigned
				L=(3) and (4), respectively.
				$d\sigma/d\Omega=221.$
7561.6 5			0.20	$d\sigma/d\Omega = 146.$
7623.5 5				$d\sigma/d\Omega = 49.$
/638.5 7676 4 6				$a\sigma/a_2=59.$
7670.4 0 7694 4 6				$d\sigma/d\Omega = 44$ (30.7).
7701.2.6				$d\sigma/d\Omega = 42$ (30.7°).
7769.4 10				$d\sigma/d\Omega = 8.2$.
7814.7 6				$d\sigma/d\Omega = 15 \ 3 \ (30.7^{\circ}).$

$E(level)^{\dagger}$	J^{π}	L	$\beta_L R^{\ddagger}$	Comments
787175	$2+^{b}$	2	0.23	$d\sigma/dQ = 696$
1011110	21	-	0.20	$S \cdot 0.28$ (1984Ho16)
				B(E2)(W,u)=0.92 1.5.
7927.9.5		4	0.29	$d\sigma/d\Omega = 333$
1921.9 5			0.2	B(E4)(W,u)=2.2.2.2
797636@				$d\sigma/dQ=92$
8018.8.10				$d\sigma/dQ=15.3$
8051.8.6				$d\sigma/d\Omega = 52$
8091.2.6	$2 \pm b$	2	0.17	$d\sigma/d\Omega = 269$
0071.2 0	21	2	0.17	$S = 0.21 (1984H_016)$
				$B(F2)(W_{11}) = 0.38.6$
811316		3	0.16	$d\sigma/dQ = 115$
8138.1 10		0	0110	$d\sigma/d\Omega < 20$.
8186.8 10		(6)	0.15	E(level): unresolved from 8196 in 1972Gr26
		(-)		$d\sigma/d\Omega = 15.4$.
8195.9 6				$d\sigma/d\Omega=33$ 5.
8271 <i>I</i> [@]				$d\sigma/d\Omega = 170.34$
8276 1@				$d\sigma/dQ = 250.50$
8323 1 6				$d\sigma/d\Omega = 235$
8339.1.6				$d\sigma/d\Omega = 36$
8358.9 6				$d\sigma/d\Omega = 121$
8373.3 6		(4)	0.35^{e}	E(level): unresolved from 8359 in 1972Gr26.
		()		S: 0.31 (1972Gr26).
				$d\sigma/d\Omega = 348.$
				B(E4)(W.u.)=2.0 2.
8424.2 7	2-	3	0.25	$J\pi$: from (pol p,p') (1985Ho14,1982Ho13).
				$d\sigma/d\Omega=279$.
8439.0 7				$d\sigma/d\Omega = 100.$
8484.3 7				$d\sigma/d\Omega=50.$
8551.1 7		5	0.19	$d\sigma/d\Omega = 169.$
8578.2 7	2+	2	0.17	$J\pi$: from 1982Ho13 and 1984Ho16.
				S: 0.16 (1984Ho16).
				$d\sigma/d\Omega = 439.$
8626 <i>10</i> ^{&}				$d\sigma/d\Omega < 8.$
8665.3 8				$d\sigma/d\Omega = 112.$
8747.7 8	$2+^{b}$	2	0.15	S: 0.12 (1984Ho16).
				$d\sigma/d\Omega=392.$
8805 <i>10</i> ^{&}				$d\sigma/d\Omega < 8.$
8850.6 9		7	0.09	S: 0.28 for L=6.
				$d\sigma/d\Omega=42.$
8909.0 9 ^{&}				$d\sigma/d\Omega=24.$
8938.4 9				$d\sigma/d\Omega = 66.$
8978 6		6	0.17	E(level): from 1981An08 and 1987Ya11.
8995.0 10				$d\sigma/d\Omega=50.$
9032.7 10		5	0.16	$d\sigma/d\Omega = 177.$
9050.1 10				$d\sigma/d\Omega=47.$
9080.3 11				$d\sigma/d\Omega=20$ 5.
9093.0 11				$d\sigma/d\Omega=32$ 6.
9136.1		3	0.23	$d\sigma/d\Omega = 177.$
9162.1 <i>11</i>				$d\sigma/d\Omega = 131.$
9185.3 <i>12</i>				$d\sigma/d\Omega = 30.5.$
9209.0 12				$d\sigma/d\Omega = 317.$
9227.5 12		_	0.5.	$d\sigma/d\Omega = 75.$
9246.0 12		7	0.06	S: 0.23 for L=5.
00745.10				$d\sigma/d\Omega = 40$ 12.
9274.5 12		-	0.1.5	$d\sigma/d\Omega = 38.$
9372 5		3	0.16	
9418.5		3	0.26	

E(level) [†]	J^{π}	L	$\beta_L R^{\ddagger}$	Comments
9465 5				
9547 <i>5</i>		4	0.15	
9591 4		3	0.12	E(level): from 1972Gr26.
9657 <i>5</i>				
9859 4		5	0.19	
9877 5 [@]	(2+)	2	0.14	L: 0,1 (1984Ho16) for second component.
				S: from 1984Ho16 for a doublet at 9868. I_{π} : 1 + in Adopted Levels
10058 5		5	0 19	3π . 1+ III Adopted Levels.
10287 5		4	0.19	
10290 5			0.10	
10328 5	1 +			$J\pi$: from (pol p.p') (1985Ho14).
10344 5				
12030 ^{&}		1		L: from 1981An08.
13420		$(2)^{d}$		
13450#		. /		
13510#				
13610		2^d		
13700		$\frac{2}{2^d}$		
13830		$(2)^{d}$		
13890		$(0)^d$		
13921 <i>15^a</i>	(4-)	(0)		T=0 (1989Sa23).
				J π : from $\sigma(\theta)$ (1989Sa23); but L=(4) in 1987Ya11.
14020		$(3)^{d}$		
14100		2^{d}		
14210		$(3)^{d}$		
14283 15 ^a	(6-)	(-)		T=1 (1989Sa23).
				J π : from $\sigma(\theta)$ (1989Sa23).
14320		$(3)^{d}$		
14410		3^d		
14500		2^d		E(level): doublet: 14490+14530.
14660		2^d		
14780		2^d		
15080#				
$31 \times 10^3 2$		3		E(level): from 1980Ca14. Γ=10 MeV 2 (1980Ca14).

 † From 1975No04 for levels up to 9300 (level energies where no uncertainties are stated were used as calibrants); from 1981Ej02 for levels between 9370 and 10350; from 1987Ya11 for levels between 13500 and 15100; others as specified L; from 1972Gr26; others as noted.

[‡] From 1972Gr26, unless otherwise stated.

Multiplet.

@ Doublet.

[&] From 1981An08. ^a From 1981Ej02.

^b From 1984Ho16. ^c From 1993Se02.

^d From 1987Ya11. ^e From 1980Ad03.

40 Ca(p,p' γ) 1973Te04,1969Po04,1969An09

Other main references: 1977Ul01, 1968Ma05, 1966Gr03. 1973Te04: E=12 MeV. Measured p- γ coin, deduced branching ratios and lifetimes. 1969Po04: E=8.5-9.0 MeV. Measured $\gamma(\theta)$, lifetimes by DSAM. 1969An09: E=8.5-10 MeV. Measured $p\gamma(\theta)$, $\gamma(\theta)$, lifetimes by DSAM. 1968Ma05, 1969Ma19, 1971Ma03: E=8-10, 7.73, 7.32 MeV. Measured $p\gamma\gamma$ coin, $p\gamma(\theta)$, $\gamma\gamma(\theta)$, lifetimes by DSAM. 1966Gr03: E=13.065 MeV. Measured $p\gamma \operatorname{coin}, p\gamma(\theta)$. Others:. 1988Ga22: E=10.2 MeV. Measured pair production spectra. 1984Sc37: E=5.08 MeV. Measured $\gamma(\theta)$ for double γ decay from first excited 0+ state. 1980Al13: E=6.253 MeV. Measured $p\gamma(\theta)$, $p\gamma(t)$. 1977Ul01: E=7-10 MeV. Measured proton-pair coin, deduced E0 branching from 0+ levels. 1974He13: E=7.68, 9.27 MeV. Measured $\gamma(\theta, H, t)$, hyperfine fields and magnetic moment. 1973Te04, 1971Te02, 1970Te01, 1969Te03: E=12 MeV. Measured pγ coin, lifetimes by DSAM. 1972Ta17: E=8.7 MeV. Measured $p\gamma(t)$. 1972Si01: E=10.81 MeV. Measured py coin, $p\gamma(\theta)$, lifetimes by DSAM. 1970Ha27: E \approx 5.08 MeV. Measured $\gamma\gamma$ coin. 1969Ca17: E=6.14 MeV. Measured $\gamma\gamma\gamma$ coin.

1968Ba64: $(p,p'\gamma)$ E=13 MeV. 16 levels reported.

1967Sc39: E=5.4 MeV. Measured $p\gamma(t)$.

1965Ne04 (also 1963Ro30): E=150 MeV. Measured $p\gamma \operatorname{coin}, p\gamma(\theta)$.

1963Su12: E=4.4, 5.08 MeV. Measured pγγ coin; deduced E0 branch. Others: 1967Ba02, 1966Go23 (also 1963Go34,1961Go30,1960Go20,1958Go90), 1962Ne02, 1960Wa15, 1959Kl46, 1959Ch28, 1958Hi66, 1958Be15, 1957Ty36, 1955Be73.

⁴⁰Ca Levels

$E(\text{level})^{\dagger}$	$J^{\pi \#}$	$T_{1/2}^{\ddagger}$	Comments
0	0+		
3353 2	0+	2.17 ns 8	$T_{1/2}$: weighted average from 1967Sc39 and 1959Kl46.
3736.7 <i>3</i>	3-	40.9 ps 35	$T_{1/2}$: from 1972Ta17.
3904.6 4	2+	34 fs 7	-1/2.
4491.6 4	5	>4.9 ps	g=+0.54 10 (1974He13).
		1 . 1	$T_{1/2}$: from 1969Po04.
5212.4 5	(0+)	1.1 ps 3	$J\pi$: 1 is not ruled out: adopted $J\pi=0+$.
5248.5 5	2+	94 fs 17	·····
5277.8 5	4+	226 fs 27	
5613.9 4	4-	0.69 ps 10	J π : stretched dipole to J=3 and γ to J=5.
5628.6 8	2+	42 fs 15	J π : assigned to this level which was not resolved from 5613 by 1966Gr03.
5903.1 16	1-	42 fs 14	· ·
6025.4 4	2,3	171 fs 21	J π : 2- in Adopted Levels.
6029.3 7	2,3	0.42 ps 8	J π : 3+ in Adopted Levels.
6285.1 4	3	0.35 ps 3	
6508.2 7	4+	128 fs 21	
6543.1 7	4+	121 fs 21	
6582.1 6	2,3	173 fs 28	J π : 3- in Adopted Levels.
6751.0 8	2-	96 fs 28	E(level): weighted average 1973Te04 and 1972Si01.
			$J\pi$: from 1972Si01.
			$T_{1/2}$: from 1973TeO4 and 1972SiO1.
6910.8 <i>10</i>		<10 fs	
6928.3 25		104 fs 28	
6938.0 18		0.42 ps 17	
6952.8 15		<10 fs	
7113.1 10		55 fs 28	
7115.2 7		35 fs 21	
7238.6 6		97 fs 49	
7278.1 8		49 fs 35	
7298.6 10		118 fs 35	
7397.2 10		0.47 ps 14	
7421.9 15		0.20 ps 14	
7446.1 <i>15</i>		140 fs 50	

E(level) [†]	$J^{\pi \#}$	$T_{1/2}^{\ddagger}$	Comments
7468.5 6		<10 fs	
7531.2 17		149 fs 35	
7559.3 10		166 fs 42	
7623.0 15		111 fs 28	
7658.5 17		<10 fs	
7677.3 10		200 fs 50	
7694.5 8		<10 fs	
7771.2 20		166 fs 35	
7813.5 30			
7873.7 10		<14 fs	
7927.2 20		49 fs 35	
7977.2 10		21 fs 21	
8018 <i>3</i>			
8093.2 20		<28 fs	
8115.2 20		<14 fs	
8134.5 15		<28 fs	
8188.7 15		<17 fs	
8268 4			
8275 4			
8321.0 20		42 fs 21	
8358.1 20		104 fs 21	
8364 5			
8425.3 20		<17 fs	
8437 4			
8485.2 30		24 fs 14	
8541		14 fs 14	
8552.6 20		<17 fs	
8573 4		<21 fs	
8587 6			
8633 6 [@]			
8671 6			
8676 6 [@]			
8717 8 [@]			
8756 8			
8769 8 [@]			
8819 <i>10[@]</i>			
8860 10 [@]			
8922 10 [@]			
8040 10@			

 A_2 and A_4 coefficients are from 1969An09 and/or 1966Gr03.

are listed under comments in cases where these differ. ^(a) No γ 's reported by 1973Te04.

6580, all levels are from 1973Te04.

9011 10

[†] Weighted average from 1969Po04 and 1973Te04, unless noted otherwise. Above 6580, all levels are from 1973Te04. [‡] From DSAM; weighted average from 1973Te04, 1969Po04, 1969An09, 1968Ma05 and others as noted. Above

[#] From 1969An09 and 1966Gr03. Parities are from multipolarities suggested by RUL. Values from Adopted Levels

\mathbf{E}_{i}^{level}	\mathbf{J}_i^{π}	\mathbf{E}_{f}^{level}	$\mathbf{J}_f^{\boldsymbol{\pi}}$	${\rm E}_{\gamma}^{\dagger}$	I_{γ}^{\ddagger}	Mult. [§]	$\delta^{\$}$	Comments
3353	0+	0	0+	3353		EO		Decays to g.s. by electron-positron internal pair formation. I(ce)/I(e+e- internal pair)=0.00694 20 (1962Ne02); I(2-photon)/I(e+e- internal pair)=0.00036 9 (weighted average from 1984Sc37 and 1973Be24). Earlier measurements: only upper
3736.7	3-	0	0+	3736.5 3	100	E3		limits deduced. A ₂ =+0.81 3, A ₄ =+0.17 6,
3904.6	2+	0	0+	3904.4 4	100	E2		$A_6 = +0.33 \ 8 \ (1966Gr03).$ $A_2 = +0.59 \ 3, \ A_4 = -1.20 \ 5 \ (1966Gr03).$
4491.6	5	3736.7	3-	754.7 2	100	Q(+O)	+0.05 5	(1966Gr03). A ₂ =+0.33 5, A ₄ =-0.26 8
5212.4	(0+)	0 3904.6	0+ 2+	4491 1307.7 <i>3</i>	<0.5 100			(1966Gr03). $A_2=0.00 I, A_4=-0.01 I$ (1966Gr03).
		0	0+	5212				I_{γ} : I(e+e- internal pair)<0.0014 (1977Ul01).
5248.5	2+	3904.6	2+	1344.4 <i>3</i>	15 4	M1+E2	+13 +6-3	$A_2 = -0.02 \ 4, \ A_4 = -0.20 \ 6$ (1969An09)
		3353	0+	1895	1.7 10	(E2)		I_{γ} : from B(E2)=0.035 6 (1977U01)
		0	0+	5247.9 6	83 4	E2		$A_2 = +0.46 \ 3, A_4 = -0.63 \ 3$ (1969An09)
5277.8	4+	3904.6	2+	1373.0 <i>3</i>	100	Q(+O)	+0.02 4	$A_2 = +0.46 \ 4, \ A_4 = -0.28 \ 5$ (1966Gr03).
5613.9	4-	4491.6 3736.7	5 3-	1122.8 2 1876.9 <i>4</i>	29 <i>3</i> 71 <i>3</i>	D		Mult.: A_2 =-0.75 20 (1966Gr03).
5628.6	2+	3904.6 3353 0	2+ 0+ 0+	1724 2277.5 10 5628.3 5	<3 13 <i>3</i> 87 <i>3</i>	E2		$A_2 = +0.38 5, A_4 = +0.53 9$ (1966Gr03)
5903.1 6025.4	1- 2,3	3736.7 3353 0 3904.6	3- 0+ 0+ 2+	2167 2551 5902.6 <i>15</i> 2121.0 <i>6</i>	<5 <6 100 20 5	E1		A ₂ =-0.51 3 (1966Gr03). A ₂ =+0.41 15, A ₄ =+0.07 22 (1969An09). δ : δ (O/Q)=0.0 1 for J=2;
		3736.7	3-	2289.0 <i>3</i>	80 5	D+Q		$\delta(Q/D)=+3.7 + 70-15$ for J=3. A ₂ =+0.02 5, A ₄ =-0.22 8 (1969An09). δ : -2.8 5 for J=2; +3.7 10 for J=3. Other: -4.7 +20-10 (1966Gr03) for doublet.
6029.3	2,3	5277.8	4+ 2	751	3 1	O(+D)	<u>`</u>	A -10.07 15 A :0.52
		3248.3 3904 6	2+ 2+	2124.4.3	15 4 87 4	Q(+D)	>2	$A_2 = +0.07 I_3, A_4 = +0.35$ 22 (1969An09). $A_2 = +0.06 T, A_4 = +0.23 I_0$
		3736.7	3-	2292	<20			(1969An09). A ₂ =0.16 7, A ₄ =+0.03 9
		0	0+	6029	<6			(1969An09).
6285.1	3	4491.6	5	1793.3 2	73 5	Q(+O)	-0.03 17	$A_2 = +0.18 4, A_4 = -0.05 7$
		3904.6	2+	2380.0 5	24 5	D		(1) $A_2 = -0.52$ 12, $A_4 = 0.00$ 17 (1966Gr03).

γ ⁽⁴⁰ Ca) (continued)											
\mathbf{E}_{i}^{level}	\mathbf{J}_i^{π}	\mathbf{E}_{f}^{level}	J_f^π	$E_{\gamma}{}^{\dagger}$	${\rm I}_{\gamma}{}^{\ddagger}$	Mult. [§]	δ^{\S}	Comments			
		0	0+	6284	3.2						
6508.2	4+	6029.3	2.3	479	< 5						
0000.2	• •	5628.6	2,3	879	< 5						
		5277.8	4+	1230	< 3						
		5248.5	2+	1260	13 3						
		3904.6	2+	2603.2 3	84 5	E2(+M3)	-0.09 9	$A_2 = +0.38 \ 3, A_4 = -0.40 \ 4$			
6543.1	4+	5628.6	2+	914	16 4	E2		$A_2 = +0.53 \ 12, A_4 = -0.28 \ 19 \ (1969An09).$			
		5277.8	4+	1265	6 <i>3</i>			. ,			
		5248.5	2+	1295	73						
		3904.6	2+	2638.1 <i>3</i>	71 9	E2(+M3)	-0.07 7	A ₂ =+0.41 <i>3</i> , A ₄ =-0.35 <i>4</i> (1969An09).			
6582.1	2,3	5613.9	4-	969	52						
		4491.6	5	2090	52						
		3904.6	2+	2677	20 5						
		3736.7	3-	2845.1 <i>3</i>	70 10			A ₂ =+0.11 <i>15</i> , A ₄ =-0.39 <i>21</i> (1969An09).			
		0	0 +	6582	<6						
6751.0	2-	3904.6	2+	2846	15						
		3736.7	3-	3014	85	M1+E2	-0.84 16	Mult.: from $p\gamma(\theta)$ and $p\gamma(\theta)$ (1972Si01); parity from BUI			
6910.8		0	0 +	6910	100			Hom ROL.			
6928.3		5277.8	4+	1652	50						
		3736.7	3-	3190	50						
6938.0		3736.7	3-	3201	> 80						
6952.8		0	0 +	6952	100						
7113.1		5628.6	2+	1485	3						
		5212.4	(0+)	1900	14						
		3904.6	2+	3207	18						
		0	0 +	7113	65						
7115.2		4491.6	5	2623	20						
		3736.7	3-	3378	60						
7238.6		5613.9	4-	1624	20						
		4491.6	5	2746	40						
		3736.7	3-	3501	40						
7278.1		3736.7	3-	3541	> 80						
7298.6		5628.6	2+	1670	<10						
		5248.5	2+	2050	> 80						
7397.2		5277.8	4+	2119	>80						
7421.9		3736.7	3-	3685	> 80						
7446.1		5613.9	4-	1831.5 10	40						
		5277.8	4+	2169	30						
		5248.5	2+	2198	30						
7468.5		0	0 +	7468	100						
7531.2		5613.9	4-	1918	30						
		3736.7	3-	3794	70						
7559.3		5248.5	2+	2311	40						
		3736.7	3-	3822	60						
7623.0		5628.6	2+	1994	25						
01010		5613.9	4-	2009	25						
		3736.7	3-	3886	50						
7658 5		5613.9	4-	2045	50						
, 050.5		4491 6	5	3167	27						
		37367	3-	3921	23						
7677 3		5277 8	4+	2399	>80						
7694 5		37367	3_	3957	>90						
7771 2		5613.9	4-	2158	30						

	<u>y(Ca) (continued)</u>										
\mathbf{E}_{i}^{level}	\mathbf{J}_i^{π}	\mathbf{E}_{f}^{level}	\mathbf{J}_f^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	Mult.§	δ^{\S}	Comments			
		3736.7	3-	4034	70						
7813.5		5248.5	2+	2565	30						
		3904.6	2+	3908	70						
7873.7		0	0 +	7873	100						
7927.2		5613.9	4-	2314	40						
		4491.6	5	3435	50						
		3736.7	3-	4190	10						
7977.2		5277.8	4+	2699	10						
		3904.6	2+	4072	50						
		3353	0+	4624	30						
		0	0+	7977	10						
8018		5248.5	2+	2770	> 80						
8093.2		0	0+	8092	100						
8115.2		0	0+	8114	100						
8134.5		5628.6	2+	2506	20						
		4491.6	5	3643	40						
		3904.6	2+	4229	40						
8188.7		3736.7	3-	4452 8	>80						
8268		6952.8		1315	60						
		5903.1	1-	2364	40						
8275		5628.6	2+	2646	>60						
8321.0		6025.4	2,3	2296	15						
0250 1		3/36.7	3-	4584 15	85						
8358.1		6952.8	~	1405	>90						
8364		4491.0	2	3872	>80						
8425.5		5/30./	3-	4688 15	>90						
0431		2726.0	2+	2808	> 00						
040 <i>3.2</i> 9541		2252	3- 0+	4/40	>90 40						
0341		0	0+	8540	40 60						
85526		0 1/01 6	0+ 5	4061	100						
8573		0	0+	8572	100						
8587		6025.4	23	2562	15						
0007		5277.8	$\frac{2}{4+}$	3309	15						
		3904.6	2+	4682	10						
		3736.7	3-	4850	60						
8671		0	0+	8670	>80						
8756		õ	0+	8755	100						
9011		0	0+	9009	100						

 γ ⁽⁴⁰Ca) (continued)

[†] Weighted average of 1973Te04, 1969Po04 and 1968Ma05. Above 6580 level, all levels and gammas are from 1973Te04. [‡] From 1969An09, 1969Po04 and 1966Gr03. [§] From $p\gamma(\theta)$ (1966Gr03); RUL used for parity assignment.

⁴⁰Ca(**p**,**p***α*),(**p**,2**p**):resonances 2001Sc25

2001Sc25: E=100 MeV. Measured $\sigma(\theta)$, DWBA analysis. 1994Vo05: (p,p'a) E=99.1 MeV, deduced electric giant resonances. 1981Na03: (p,p α) E=101.3 MeV. Measured $\sigma(\theta)$. 1981Ca02: (p,p α) E=101.5 MeV. Measured $\sigma(\theta)$. 1976Ba38: (p,p α) E=157 MeV. Measured $\sigma(\theta)$. 1969Ja12: (p,2p) E=385 MeV. 1964Ru05: (p,2p) E=150 MeV.

⁴⁰Ca Levels

E(level) J^{π} Comments

11700 E(level): resonance in (p,p'p) to ³⁹K g.s.; FWHM=800. 12300 E(level): resonance in (p,p'a) to ³⁶Ar g.s.; FWHM=300.

⁴⁰Ca(d,d'),(pol d,d') 1966Ni02,1968Ha31,1989Ec01

Includes (d,d) and (pol d,d).

1966Ni02: E=12.8 MeV. Measured $\sigma(\theta)$; DWBA analysis.

1968Ha31: E=7.5 MeV. Measured $\sigma(\theta)$, θ =22.5° - 157.5°.

1989Ec01: (pol d, d') E=23.2 MeV. Measured Ay(θ), θ =15° - 110°.

1980Wi12: E=108 MeV. Measured $\sigma(\theta)$, $\theta=4^{\circ} - 20^{\circ}$.

1989Sa23: E=56 MeV. Measured $\sigma(\theta)$ for 14-MeV level, FWHM=25 keV. Compared (d,d') and (p,p') results.

1992Mo17: (pol d,d') E=400 MeV. Measured Ay(θ), deduced spin-transfer parameter (Δ S).

Other: 1974PeZW: (d,d') and (pol d,d') E=29 MeV.

(d,d): most references report $\sigma(\theta)$ and deduce optical-model parameters:.

1980Im01 (E=4.50-5.43 MeV), 1977An24 (E=1.8-3.0 MeV), 1970Ve02 (E=13.6 MeV), 1970Se01 (E=11.12 MeV), 1970Fi01 (E=11.8 MeV), 1970Bu08 (E=28 MeV), 1970Br27 (E=10 MeV), 1968Le05 (E=5-6.5 MeV), 1968Ga13 (E=28 MeV), 1968Be36 (E=7.0, 7.2 MeV).

(pol d,d): Ay(θ) and optical-model parameters:

1998Oh05 (E=270 MeV), 1994Mo21, 1994Ko47 (E=380 MeV), 1987Ta15 (E=22 MeV), 1987Er03 (E=52 MeV), 1986Ma32 (E=56 MeV), 1985Ng01 (E=700 MeV), 1984Fr14 (E=20 MeV), 1982Cl03 (E=20 MeV), 1982Cl01 (E=18-23 MeV), 1980Ha14 (E=56 MeV), 1977Pe07, 1974Ro09 and 1974PeZW (E=30 MeV), 1971Bo44 and 1971Bo39 (E=1.6-3.0 MeV), 1969Sc02 (E=5,7,9,11 MeV).

	⁴⁰ Ca Levels									
E(level) [†]	$J^{\pi \#}$	Γ@	L‡	$\beta_L^{\&}$	Comments					
0	0+		0							
3352 8			0	0.07						
3735 8	3-		3	0.31	S: other: 0.21 2 (1980Wi12). ΔS=0 (1992Mo17).					
3903 8	2+		2		L: from 1989Ec01; very weakly populated level in 1966Ni02.					
4480			5	0.15	E(level): from 1966Ni02.					
7561					E(level): from 1989Sa23.					
9000					E(level): from 1992Mo17; Δ S=0.					
13921 15					E(level): from 1989Sa23 and 1992Mo17; T=0, Δ S=1.					
$14.5 \times 10^3 2$	0+&2+	1.5 MeV 2	0+2		E(level): from 1980Wi12.					
15.0×10^{3}	1+				E(level): from 1992Mo17, T=0.					
					Jπ: 1992Mo17.					
$18.2 \times 10^3 5$	0+&2+	4.0 MeV 3	0+2		E(level): from 1980Wi12.					
					J <i>π</i> : from 1980Wi12.					

[†] From 1968Ha31, unless otherwise stated.

[‡] From 1966Ni02 and 1989Ec01, except when noted otherwise.

[#] From Ay(θ) in (pol d,d') (1989Ec01,1992Mo17).

[@] From 1980Wi12.

[&] From 1966Ni02.

40 Ca(t,t),(pol t,t)

1987En06,1980Ha08,1969Fl06

Measured $\sigma(\theta)$, deduced optical-model parameters. 1987En06: (t,t) E=33 MeV. 1980Ha08: (pol t,t) E=17 MeV. Measured Ay(θ). 1969Fl06: (t,t) E=20 MeV.

⁴⁰Ca(³He,³He') 1967Gi05

Includes (³He,³He).

1967Gi05: E=37.7 MeV. Measured $\sigma(\theta)$, $\theta(\varepsilon M)=20^{\circ} - 95^{\circ}$ FWHM=100 keV.

1984Ta11: E=197 MeV. Measured $\sigma(\theta)$. 1982Ta05: E=170 MeV. Measured GQR at E=20 MeV.

1980Le25: E=108.5 MeV. Measured $\sigma(\theta)$, deduced giant- monopole resonance.

1978Ya05: E=120 MeV. Measured σ at θ =1.2°. Deduced isoscalar multipole resonances.

- 1976Mo07: E=70 MeV. Measured $({}^{3}\text{He})(p)(\theta)$, $({}^{3}\text{He})(\alpha)(\theta)$ for giant resonance.
- 1974Mo13: E=29 MeV. Measured $\sigma(\theta)$, $\theta(\varepsilon M)=20^{\circ}$ 100°.

1973Mo10: E=71 MeV. Measured $\sigma(\theta)$.

(³He, ³He): optical-model parameters from $\sigma(\theta)$ data:.

1986Ab08 (E=10,12,14,16,18 MeV), 1984ChZT (E=132 MeV), 1982Ve13 (E=25 MeV), 1981Gr05 (E=50.4 MeV), 1980Tr02 (E=41 MeV), 1978Ch04 (E=27.7,51.4,73.2,83.5 MeV), 1975Br26 (E=24.5-28 MeV), 1973Wi07 (E=217 MeV), 1973Ro18 (E=8,11 MeV), 1973Mo13 and 1972Mo04 (E=29 MeV), FRNC-TH-443 (1973) (E=7,8,11 MeV), 1971Ur01 (E=21 MeV), 1971Ra35 (E=13 MeV), 1969Zu02 (E=15 MeV), 1965Cl04 (E=8-10.25 MeV).

⁴⁰Ca Levels

E(level) [†]	\mathbf{J}^{π}	Г	L^{\dagger}	${eta}_L^\ddagger$	Comments
0	0+		0		
3330			0		E(level): average of 1967Gi05 and 1974Mo13. L: from 1974Mo13.
3730			3	0.23	E(level): average of 1967Gi05 and 1978Ya05.
4480			5	0.079	-
5250					
5650					
6280			3	0.078	
6590			3	0.062	
6940			2+3		
7950					
8470					
14200		200 keV	0		1978Ya05: α decay to ³⁶ Ar g.s. with isotropic angular correlation.
					1976Mo07: α decay to ³⁶ Ar (g.s., 1970 and 4300 (multiplet));
					p decay to 39 K (g.s.,2520 and higher levels).
16700		0.90 MeV	(3)		1978Ya05: α decay to ³⁶ Ar g.s.
18200		2.2 MeV	2(+0)		1978Ya05: α decay to ³⁶ Ar states near 4000.
					1976Mo07: α decay to ³⁶ Ar (g.s., 1970 and 4300 multiplet);
					p decay to 39 K (g.s.,2520 and higher levels) L; weak L=0
					component (1980Le25).

[†] 1967Gi05, except where noted.

[‡] From 1967Gi05.

⁴⁰Ca(*α*,*α'*) **1981Va09,1967Li13,1965Sp01**

Other main references: 1965Ba03, 1970Sc24, 1974De42, 1981Lu05. 1981Va09: E=120 MeV. 1967Li13, 1966Be19: E=31 MeV. 1966Sp01, 1965Sp01 (also 1966Po03): E=27-40 MeV. 1981Lu05: E=98.5, 116.8, 129.4 MeV; $\sigma(\theta)$. 1974De42: E=24.0, 28.5, 31.0 MeV. 1970Sc24: E=29 MeV; $\sigma(\theta)$, $\theta=15^{\circ} - 176^{\circ}$. 1965Ba03: E=30.5 MeV. 1962Be23: E=22 MeV. About 10 a groups reported. Data for selected levels or giant resonances:. 2003Yo11: E=240 MeV. Measured cross section for isoscalar E0 strength between 6 and 11 MeV at small angles. 2001Yo07, 2001Yo06, 1997Yo07: E=240 MeV; measured $\sigma(\theta)$; deduced E0, E1, E2 widths. 1983Br21: (α, α') , $(\alpha, 2\alpha)$ E=120 MeV; $\sigma(\theta)$ at giant resonance. Deduced monopole strength. 1981Yo04: E=99, 117, 129 MeV. 1979Ro09: E=104 MeV; giant resonances at E=13.3-21.8 MeV. 1978Mo10: E=96,115 MeV; giant resonance near E=8.8 MeV. 1978De25: E=40-62 MeV. 1977Al07: E=1.37 MeV. 1976Yo02: E=96, 115 MeV; giant resonance. 1974Ru01 (also 1974RuZS): E=115 MeV; giant resonance. 1973Bi12: E=166 MeV. 1971Ta15: E=166 MeV. 1970Br07: E=44 MeV; $\sigma(\theta), \theta=15^{\circ} - 180^{\circ}$. 1968Bu10: E=25 MeV. 1961Sa04: E=44 MeV. Others:. 1987Se09: E=5-9 MeV. 1985Zw02, 1982Zw01, 1986ZwZZ: (α, \approx) , $(\alpha, 2\alpha)$ E=120 MeV; $\sigma(\theta)$ for giant resonance. 1983VaZX:. 1983Fr03: E=4.4-9.1 MeV. 1981Gu01: E=23-80 MeV. 1980Gi02: E=104 MeV. 1979Ka03:. 1979Ba14: E=1.37 GeV. 1978Se16: E=6-18 MeV. 1978Gu08: E=21-47 MeV. 1978Fr22: E=104 MeV. 1977SmZX: E=30 MeV. 1977Bu15: E=27.2 MeV. 1976Ru02: E=79.1 MeV. 1976Eb03: E=20-26 MeV. 1976Ch19: E=24.4-85.6 MeV. 1976Br11: E=166 MeV. 1975Tr01: E=24-29 MeV. 1975Mo04: E=96.6 MeV. 1975Le19: E=79.1 MeV. 1975Ei04: E=100 MeV. 1974Go22: E=141.7 MeV. 1974Mo22: E=96 MeV. 1974In02: E=40 MeV. 1974RuZS:. 1972St28: E=40.7-72.3 MeV. 1972Oe01: E=24,29 MeV. 1972Br30: E=166 MeV. 1971LeYV: E=166 MeV. 1971Le18: E=18-22 MeV. 1970Fe02: E=42 MeV. 1969La20, 1969La37: E=23 MeV. 1969Jo05 (also 1968JoZZ): E=5.0-12.5 MeV. 1969Ga22: E=18-29 MeV. 1969Be30, 1966Be19: E=29,31 MeV. 1966Gr09: E=27-40 MeV.

1965Ta06: E=22.2 MeV. 1962Sa15: E=43 MeV.

	⁴⁰ Ca Levels								
E(level) [†]	$J^{\pi \ddagger}$	Г	L^{\dagger}	$\beta_L \mathbf{R}^a$	Comments				
0	0	·	0	12					
3350	0+		0	0.07					
3780	3		3	0.07					
3000	2		2	0.89 5					
<i>1</i> /180	27		5	0.39 5					
4400 5250 [#]			2	0.45 5					
5250" 5200#			3						
5280"			2	0.17.5					
5620			2	0.1/ 5	L: from 1981 va09. Other: 4 (1965Ba03).				
5890			1		L: other: L=3 with $\beta_L R=0.18$ (1965Sp01).				
6030			$\langle 0 \rangle$	0.20					
6160			(3)	0.39	E(level): from 1961Sa04 and 1970Br07 only.				
6290			3	0.33 5	1.6. 10700.04				
6510			4	0.21	L: from 1970Sc24.				
6540			3	0.31	L: from 1965Ba03.				
6580 [®]			3	0.14					
6740 [@]			(3)	0.41	E(level): from 1961Sa04 and 1970Br07 only.				
6940					L: several assignments; none adopted by the evaluators.				
7120			(6)		L: from 1965Ba03.				
7290			0		L: from 1970Sc24. Other: 4 (1965Sp01).				
7470 ^{&}									
7570 ^{&}									
7690					E(level): from 1966Be19, 1967Li13 and 1970Sc24.				
7900			2	0.33 4	L: from 1981Va09. Other: 4 (1965Ba03).				
7940			4	0.37 8	L: from 1966Be19 and 1967Li13.				
8100			2	0.31 8					
8290 ^{&}			(2)	0.23					
8380			4	0.29 6	L: other: 5 (1965Ba03).				
8600			2	0.20					
8790			2	0.17					
8970			(2)	0.13					
9340			3	0.17					
9500									
9870									
10080									
10340			4	0.17					
10590		0.48 MeV 5	(3)	0.10	L: from 1981Va09. Other: 1 (1981Lu05).				
10800			(3)	0.11					
11100			(2)	0.27					
11470			(3)	0.10					
11690			2	0.14					
11940			(2)	0.15					
13450		0.37 MeV 6	0		L: from 1981Lu05 and 1983Br21 other: 0+2 from α decay to				
					³⁶ Ar g.s. (1982Zw01,1983Br21,1985Zw02).				
14450		0.58 MeV 7	2	0.29	L: other: 0+2 (1979Ro09).				
					S: from 1979Ro09; 0.31 for L=0.				
15900		0.63 MeV 10	3		L: from 1981Lu05. Other: 1+2 (1979Ro09), with $\beta_L R=0.27$				
					for L=1, 0.23 for L=2.				
17700		2.31 MeV 20	2		L: trom 1981Lu05, 2001Yo07. Other: 0+2 (1997Yo07).				
10000					S: other: 2.9 MeV 6 (199/Yo07,2001Yo07).				
18200		2.5 MeV 4	2		L: trom 1981Lu05, 19/9Ro09, 1976Yo02, 1974Ru01.				
19180		4.9 MeV 6	0		$T_{1/2}$: trom 1997 Yo07, 2001 Yo07.				
21000			0+2	0.21,0.20	L: from 1979Ro09.				
23360		5.3 MeV 9	1		T _{1/2} : from 1997Yo07, 2001Yo07.				

[†] Values are from 1965Ba03, 1965Sp01, 1967Li13, 1970Sc24 and 1974De42 up to 8600; from 1981Va09 for 8600-12000; and from 1981Lu05 for levels above 12000, unless otherwise stated.
[‡] From Adopted Levels.

[#] Only 1974De42 report 5250 and 5280 as separate levels.
[@] Only 1974De42 report 6540 and 6580 as distinct levels.
[&] From 1967Li13.
^a Unweighted averaged values values are from 1965Sp01, 1967Li13, 1968Bu10, 1970Br07, and 1981Va09. Values for levels above 12000 are from 1974Ru01, 1979Ro09, 1981Lu05 and 2001Yo07 (also 2001Yo06,1997Yo07).

40 Ca($\alpha, \alpha' \gamma$) 1962Be23,1968Ko02

1962Be23: E=22 MeV. Measured E γ , $\alpha\gamma$ coin.

1968Ko02: E=31 MeV. Measured E α , E γ for 6290, 6560 levels; $\alpha\gamma(\theta)$ for 6940 level.

Others:.

1992Po02: E=120 MeV. Measured $\gamma(\theta)$, $\sigma(\theta)$ for isoscalar dipole strength.

1988Ka21, 1987Ma25: E=13.62 MeV. Measured $\alpha \gamma \operatorname{coin}$, lifetime for 4490 level, g factors for 3740 and 4490 levels.

1979Ni04: E=16.17 MeV. Measured $\alpha \gamma(\theta)$, g-factor for 3740 level.

1976Ja16, 1976Ja20, 1977LiZM: E=16.17 MeV. Measured $\alpha \gamma(\theta, H)$; γ -factOr by recoil in vacuum for 3740 level.

1959Sh62: E=43 MeV. Measured $\alpha \gamma(\theta)$ for 4490 level.

⁴⁰ Ca Levels									
E(level) [†]	$J^{\pi\ddagger}$	$T_{1/2}$	Comments						
0	0+								
3730	3-	47.1 ps 21	g=0.55 13. $T_{1/2}$: from 1979Ni04. γ : weighted average of values from 1976Ja16, 1976Ja20 and 1979Ni04; adjusted to $T_{1/2}$ =47 ps 2.						
3900			,						
4480	5-	295 ps 5	$T_{1/2}$: from 3740γ(t) (1988Ka21,1987Ma25). G(4480)/G(3730)=1.01 <i>10</i> (1987Ma25).						
5500 [#] 5700 [#] 6100 [#]									
6290 [@]	3-@								
6560 [@]	3-@								
6940 [@]	(1-)@		E(level): possible doublet or triplet, but from decay mode and DWBA fit to $\sigma(\theta)$, principally 1- (1968Ko02).						
7500#									
8700#									
9600#									

[†] From 1962Be23, unless otherwise stated.
[‡] From Adopted Levels unless otherwise stated.
[#] From 1962Be23, α group in coin with γ rays.

[@] From 1968Ko02.

$\gamma(^{40}Ca)$

A₂, A₄, A₆ coefficients are from 1987Ma25.

\mathbf{E}_{i}^{level}	\mathbf{J}_i^{π}	\mathbf{E}_{f}^{level}	$\mathbf{J}_f^{\boldsymbol{\pi}}$	${\rm E}_{\gamma}^{\dagger}$	I_{γ}	Mult.
3730	3-	0	0+	3730	100	
3900		0	0+	3900	100	
4480	5-	3900		580 ^a	<10	
		3730	3-	750	100	Q
6290	3-	4480	5-	1810	75 5	
		3900		2390	25 5	
6560	3-	3900		2660 ^a	<10	
		3730	3-	2830	100	
6940	(1-)	3900		3040 ^a		
		3730	3-	3210 ^a		
		0	0 +	6940	60 10	

[†] Level-energy differences.

^{*a*} Weak or non-existent.
⁴¹Ca(d,t) 1975Be45

J π (⁴¹Ca g.s.)=7/2-. 1975Be45: E=40 MeV. Measured $\sigma(\theta)$, FWHM=80 keV DWBA analysis.

⁴⁰ Ca Levels					
E(level)	$J^{\pi \dagger}$	L	C^2S	Comments	
0	0+	3	0.79		
3350 80	0 +	(3)	< 0.02		
3740 80	3-	0+2	0.16,0.22		
4490 80		2	0.58		
5610 80		2	0.50		
6030 80		(2)	0.10		
6580 <i>80</i>		0+2	0.27	S: for L=2.	
6750 80		2	0.18		
6940 <i>80</i>		(2)	0.20	E(level): unresolved triplet: 6930+6940+6950.	
7110 80		0+2	0.05,0.23		
7675 80		2	1.2	E(level): unresolved doublet: 7660+7690.	
8450 80		2	0.24	E(level): unresolved doublet: 8420+8480.	
8550 80		2	0.68		
9030 80		0	0.15		
10060 80		0	0.42		
11220 <i>80</i> ‡		2	0.8^{\ddagger}		
11700 <i>80</i> ‡		2	0.4^{\ddagger}		

 † From Adopted Levels. ‡ Tentatively assigned as $d_{5/2}$ pickup, since they are too strong to be L=0 (1975Be45).

⁴¹Ca(³He, α) 1974Cl08

J π (⁴¹Ca g.s.)=7/2-. 1974Cl08: E=20 MeV. Measured $\sigma(\theta)$; deduced L, s; DWBA calculations.

Other:. 1975Ap01: E=16, 27 MeV. Measured $\sigma(\theta)$; deduced C2S 0, 3730, 4490 and 5610 levels. Cross sections given under comments are in mb/sr.

40Ca Levels

E(level)	$\mathrm{J}^{\pi\dagger}$	L	C^2S	Comments
0	0+	3‡	0.98 [‡]	S: other: 0.92 (1975Ap01).
				$d\sigma/d\Omega(max)=1.65$ mb/sr.
3350 <i>5</i>	0+	3‡	0.01 [‡]	$d\sigma/d\Omega(max)=0.03$ mb/sr.
3732 5	3-	2	0.57	S: other: 0.65 (unresolved from L=3, 3350 level,1975Ap01).
				$d\sigma/d\Omega(max)=0.59.$
4488 5	5-	2‡	1.1^{\ddagger}	S: other: 1.2 (1975Ap01).
				$d\sigma/d\Omega(max)=1.20.$
5610 5		2	0.89	S: other: 0.92 (1975Ap01).
				$d\sigma/d\Omega(max)=1.12.$
5901 5		2	< 0.003	$d\sigma/d\Omega(max) < 0.005.$
6029 <i>5</i>	2-	2‡	0.17^{\ddagger}	$d\sigma/d\Omega(max)=0.26.$
6288 <i>5</i>		2	0.05	$d\sigma/d\Omega(max)=0.09.$
6583 <i>5</i>		0+2	0.04,0.21	$d\sigma/d\Omega(max)=0.41.$
6748 <i>5</i>	2-	2‡	0.22^{\ddagger}	$d\sigma/d\Omega(max)=0.31.$
6930 <i>5</i>		2	0.07	$d\sigma/d\Omega(max)=0.10.$
6950 <i>5</i>		2	0.06	$d\sigma/d\Omega(max)=0.13.$
7112 5		0+2	0.20,0.13	$d\sigma/d\Omega(max)=0.66.$
7531 <i>5</i>		2	0.03	$d\sigma/d\Omega(max)=0.04.$
7656 <i>5</i>		2	1.3	$d\sigma/d\Omega(max)=1.93.$
7693 <i>5</i>		2	1.3	$d\sigma/d\Omega(max)=1.88.$
8374 <i>5</i>		(2)	0.08	$d\sigma/d\Omega(max)=0.09.$
8423 5	2-	2 [‡]	0.62‡	$d\sigma/d\Omega(max)=0.82.$
8483 <i>5</i>		(2)	0.21	$d\sigma/d\Omega(max)=0.25.$
8551 5	5-	2‡	1.7 [‡]	$d\sigma/d\Omega(max)=2.14.$
9035 <i>5</i>		0	0.33	$d\sigma/d\Omega(max)=1.47.$
9080 <i>5</i>		(0)	0.06	$d\sigma/d\Omega(max)=0.29.$
9145 5		(2)	0.11	$d\sigma/d\Omega(max)=0.13.$
9222 5		(2)	0.05	$d\sigma/d\Omega(max)=0.08.$
9435 5		(0)	0.05	$d\sigma/d\Omega(max)=0.22.$
9460 5				$d\sigma/d\Omega(max)=0.21.$
9559 5			0.01	$d\sigma/d\Omega(max)=0.38.$
9605 5		(2)	0.31	$d\sigma/d\Omega(\max)=0.58.$
964/3		(2)	≤ 0.1	$d\sigma/dL_2(max)=0.10.$
90/3 J		0	0.09	$dO/dL_2(max)=0.89.$
10055 5		0	0.98	dO/d22(max)=0.0/.
10214 5		0	0.18	dO/dL2(max)=0.76.

[†] From Adopted Levels.

[‡] L-value fixed by adopted $J\pi$ considerations.

⁴²Ca(p,t) 1974Se05,1974De20,1972Ad10

Other main references: 1974Se04, 1977SeZR, 1972Sc19, 1969Sm02. 1974Se05 (also 2002SeZQ,1977SeZR,1974Se04): E=40.27 MeV. Measured Q value, $\sigma(\theta)$, cross sections; deduced L.

1974De20 (also 1972DeYF): E=41.7 MeV. Measured $\sigma(\theta)$; deduced L.

1972Ad10: E=41.7 MeV. Measured $\sigma(\theta)$; deduced L.

1972Sc19: E=40 MeV. Measured $\sigma(\theta)$; deduced L.

1969Sm02: E=26.5 MeV. Measured $\sigma(\theta)$; deduced L.

Others:.

1983Sa01: E=40 MeV. Measured $\sigma(\theta)$; deduced L=0 strength.

1979Fr04: E=42,46 MeV. Measured tp and t γ coin for 11980, T=2 state.

1970Mc04, 1970Ha10: E=42-46, 45 MeV. Measured α and proton decay, of 11972, T=2 IAR.

1970He23: E=20 MeV. Measured $\sigma(\theta)$; deduced L.

				⁴⁰ Ca Levels
E(level) [†]	$J^{\pi\ddagger}$	L#	Integrated σ , possibly in mb [@]	Comments
0	0+	0	64	
3355 5	0+	0	14.3	
3738 5	3-	3	13.9	
3901 5	2+	2	8.1	
4493 5		5	4.6	
5208 10		0	0.03	
5248 10		2	7.1	
5349 5				
5623 5		2	0.83	
5902 5		1	0.28	
6028 10		-	0.62	
6286 10		3	0.54	
6507 5		4	1 53	
6580 5		3	2 13	
6620 20		5	2.15	F(level): from 1972Sc19 only
6752 5		(2)	0.44	E(level). Hom 17723e17 omy.
6007 5		$\binom{2}{2}$	1.87	
6050 5		2 1	0.05	
0930 3		(2)	0.95	E(lovel), pessibly 7112, 1, and 7114, 4 (avelyatore)
7111.5		(3)	0.79	E(level): possibly /115, 1- and /114, 4- (evaluators).
7300 5			0.42	
7450 5		(2)	0.30	
7455 9		2	0.90	
14/3 5		2	0.89	
/558.5		(2)	2.68	
7620 5		0	1.21	
7653 10		0	0.53	
7693 5		0	3.0	L: other: $3(19/2Sc19)$.
7757 10			0.06	
7805 10			0.08	
7850 12				E(level): from 1974De20 only.
7871 5		2	0.64	
7925 5		(3)	0.76	
7978 10			0.26	
8025 10		0	0.22	
8085 5		4	1.05	
8113 <i>10</i>				
8192 10		(2)	0.59	
8279 10		0	0.29	
8338 10			0.26	
8375 5		4	0.95	
8430 5		0	1.40	
8483 10		0	0.28	
8547 5		5	3.2	
8578 5			0.57	
8663 10		4	0.18	
8752 10		3	0.28	
		-		

⁴⁰ Ca Levels (continued)						
E(level) [†]	$J^{\pi \ddagger}$	L [#]	Integrated σ , possibly in mb [@]	Comments		
8853 10			0.18			
8905 10		(6)	0.48			
8939 5		Ò	0.19			
8983 10						
9033 5			1.22			
9110 20				E(level): from 1972Sc19 only.		
9157 5			0.46			
9250 10			0.12			
9263 10		(2)	0.31			
9304 5		Ò	0.52			
9366 10		2	0.55			
9405 5		0	3.8			
9569 10			0.13			
9592 10						
9620 15						
9665 10			0.88			
11972 <i>12</i>		0		$\% \alpha = 100 \ 1979 Fr04, 1970 Mc04.$		
				T=2 IAR state (1979Fr04,1970Mc04).		
				L: from 1974Se05.		
				93% 9 α decay to 36 Ar g.s.; <3% α decay to first 2+ in 36 Ar; <5% p decay to 39 K g.s. (1979Fr04). Others: 1970Mc04, 1970Ha10.		

[†] Weighted average from 1977SeZR, 1974De20, 1972Ad10 and 1972Sc19.
[‡] From Adopted Levels.
[#] From 1974Se05, 1977SeZR and 1974De20.
[@] From 2002SeZQ.

⁴²Ca(¹⁶O,¹⁸O) 1976Ei02

1976Ei02: E=56 MeV. Measured $\sigma(\theta)$, $\theta(\varepsilon M)=4^{\circ}$ - 70°; finite range DWBA analysis.

$$\frac{\text{E(level)}}{0} \quad \frac{J^{\pi}}{0+} \quad \frac{L}{0} \quad \frac{d\sigma/d\Omega \text{ (max) }(\mu \text{b/sr)}}{120}$$

$(HI,xn\gamma)$ 2001Id01,2004To07,1976Na15

Includes reactions ${}^{28}\text{Si}({}^{24}\text{Mg},3\alpha\gamma); {}^{28}\text{Si}({}^{20}\text{Ne},2\alpha\gamma); {}^{28}\text{Si}({}^{14}\text{N},pn\gamma); {}^{27}\text{Al}({}^{19}\text{F},\alpha2n\gamma); {}^{27}\text{Al}({}^{16}\text{O},p2n\gamma); {}^{27}\text{Al}({}^{14}\text{N},n\gamma);$ 24 Mg(24 Mg, $^{2\alpha}\gamma$); 24 Mg(19 F,p2n γ); 36 Ar(16 O, 12 C γ).

2001Id01: ²⁸Si(²⁰Ne, $2\alpha\gamma$) E=84 MeV. Measured E γ , $\gamma\gamma$, $\gamma\alpha$ coin, $\gamma(\theta)$, lifetimes by DSAM using gammasphere array of 101 Compton-suppressed Ge detectors and microball 4π array of 95 CsI(Tl) scintillation counters.

2004To07: ²⁸Si(²⁴Mg, $3\alpha\gamma$): E=139 MeV. Measured E γ , $I\gamma$, $\gamma\gamma$, $\gamma(\theta)$ (DCO) using GASP array and charged-particle ball ISIS. Deduced negative parity bands.

1976Na15: ²⁸Si(¹⁴N,pn γ) E=36 MeV. Measured γ , γ , $n\gamma$ coin, $\gamma(\theta)$, lifetimes by DSA and recoil-distance methods. 1975Si12: ²⁸Si(¹⁴N,pn γ) E=34 MeV. Measured $\gamma(\theta)$, $\gamma(\theta)$.

2003Ch22: ${}^{24}Mg({}^{24}Mg,2\alpha\gamma)$ E=92 MeV. Measured E γ , I γ , γ , lifetimes using Doppler-shift attenuation analyses; deduced transition quadrupole moments for SD band.

Others:.

1976Po03: ²⁷Al(¹⁹F, α 2n γ) E=40 MeV. Measured $\gamma\gamma$, lifetimes by recoil-distance method.

1974Wa07: ${}^{24}Mg({}^{19}F,p2n\gamma) = 20-45 \text{ MeV}; {}^{27}Al({}^{16}O,p2n\gamma) = 20-45 \text{ MeV}; {}^{27}Al({}^{14}N,n\gamma) = 20-45 \text{ MeV}.$ Measured γ .

1973Te04: 36 Ar(16 O, 12 C γ) E=58 MeV. Measured (12 C) γ coin. Three levels reported: g.s., 3904, 5278.

All data are from 2001Id01, unless otherwise stated.

⁴⁰Ca Levels

Nuclear Level Sequences

- А 4p-4h, 0+ band. Q(intrinsic)=0.74 14 from lifetime data corresponding to $\beta_2 \approx 0.27$.
- Yrast band. B
- С 3+ band.
- $K\pi$ =0- band (2004To07). 2004To07 propose this band as a partner of 4p-4h band based on 3353,0+ state; the 1-, 3-D and 5- members of this band are proposed at 5902, 1-; 6280, 3- or 6580, 3-; and 7399, (5-), respectively. The 5902, 6280 and 6580 levels are seen in other reaction. SD band (2001Id01,2003Ch22). Q(transition)=1.30 15 for one value assumed over the whole band. For separated
- Е fits for high-spin and low-spin states, Q(transition)=1.81 +46-33 and Q(transition)=1.18 +14, respectively (2003Ch22). Corresponding $\beta_2=0.59+13-9$ for high-spin and 0.40 4 for low-spin states. Q(transition)=1.80 +39-29 from lifetime data (2001Id01), corresponding to $\beta_2=0.59$ +11-7. Configuration=8p-8h defined by $\pi 3^4 v 3^4$, where superscripts are the number of protons and neutrons occupying the N=3 $(f_{7/2})$ intruder orbital.

Seq.	E(level) [†]	$J^{\pi \ddagger}$	$T_{1/2}$	Comments
	0	0+		
А	3351.9 8	0 +		
	3736.3 <i>3</i>	3-		
А	3904.4 <i>3</i>	2+		
	4491.2 <i>4</i>	5-	0.38 ns 8	$T_{1/2}$: from recoil-distance method (1976Po03).
Е	5211.4 11	0 +		-/ -
	5248.5 6	2+		
А	5278.8 4	4+		
	5613.3 8	4-		
E	5631.2 8	2+		
С	6029.4 9	3+		
	6508.5 12	4+		
E	6543.9 7	4+		
А	6931.4 6	6+	0.34 ps +9-17	$T_{1/2}$: from DSA (1976Na15).
С	7398.4 8	(5+)		E(level): 2004To07 propose this level as the 5- member of negative-parity band, based on systematics. These authors do not find any feeding transition to this level.
	7677.2 8	(6+)		
E	7974.4 8	(6+)		
В	8100.3 <i>6</i> 8701 [#]	8+ (6-)	12.5 ps 17	$T_{1/2}$: recoil-distance method (1976Na15).
С	8935.8 9	(7+)		
D	9033 [#]	(7-)		
А	9305.2 8	(8+)		
Е	9853.5 8	(8+)		
	10474#	(8-)		

Seq.	$E(level)^{\dagger}$	$J^{\pi \ddagger}$	T _{1/2}	Comments
D	10895#	(9-)		
В	11003.0 9	(10+)		
А	11685.8 9	(10+)		
С	11708.7 12	(9+)		
E	12334.9 10	(10+)		
	12591.9 10	(10+)		
D	12923#	(11-)		
В	13115.1 <i>10</i>	12 +		
	13195#	(10-)		
С	13535.5 <i>13</i>	(11+)		
А	14232.4 10	(12+)		
В	15152.4 12	(13+)		$J\pi$: 14+ in figure 5 of 2004To07.
E	15267.1 14	(12+)		
D	15306#	(13-)		
	15748.1 14	(12+)		
А	16529.4 12	(14+)		
С	16579.7 <i>16</i>	(13+)		
	17698.6 14	(14+)		
	18054.6 14	(14+)		
D	18215#	(15-)		
E	18497.2 17	(14+)		
E	18719.2 17	(14+)		
В	19195.6 <i>16</i>	(15+)		
А	20578.6 15	(16+)		
Е	22060.4 20	(16+)		

⁴⁰Ca Levels (continued)

[†] From least-squares fit to $E\gamma'$ s, assuming 1 keV uncertainty when not stated. [‡] As proposed by 2001Id01, 2003Ch22 and 2004To07. For low-spin levels (J<6), assignments are from Adopted Levels; higher spins are from angular correlation data and band assignments, the parentheses are added by the evaluators. [#] From 2004To07.

					γ(⁴⁰ Ca)	
\mathbf{E}_{i}^{level}	\mathbf{J}_i^{π}	\mathbf{E}_{f}^{level}	$\mathbf{J}_f^{m{\pi}}$	${\rm E}_{\gamma}^{\dagger}$	Mult. [‡]	Comments
3351.9	0+	0	0+	3352.3 ^a		
3736.3	3-	0	0+	3736.1 <i>3^c</i>	E3	DCO=1.5 5 (2004To07).
3904.4	2+	3351.9	0+	553		
		0	0+	3904.0 <i>3^b</i>	Q	
4491.2	5-	3736.3	3-	754.8 2 ^c	Q	DCO=1.0 2. DCO=1.29 <i>15</i> (1975Si12).
5211.4	0+	3904.4	2+	1307 ^a		
5248.5	2+	3904.4	2+	1343		
		0	0+	5249		
5278.8	4+	4491.2	5-	787		
		3904.4	2+	1374.3 <i>3^b</i>	(Q)	$A_2=+0.41$ 5 ($A_4=-0.075$ assumed) (1976Na15). DCO=1.00 <i>16</i> (1976Na15).
5613.3	4-	4491.2	5-	1122^{d}		
		3736.3	3-	1877 ^d		
5631.2	2+	0	0+	5632 ^e		
6029.4	3+	5248.5	2+	781		
6508.5	4+	5248.5	2+	1260		
6543.9	4+	5631.2	2+	914		
		5248.5	2+	1295	(Q)	
		3904.4	2+	2640 ^e	(Q)	
6931.4	6+	5278.8	4+	1652.4 4 ^d	E2	A ₂ =+0.27 7 (A ₄ =-0.075 assumed) (1976Na15). DCO=0.82 24 (1975Si12), 1.17 20, 1.58 25 (1976Na15).

				$\gamma(+0)$	Ca) (contin	nued)
\mathbf{E}_{i}^{level}	\mathbf{J}_i^{π}	\mathbf{E}_{f}^{level}	\mathbf{J}_{f}^{π}	E_{γ}^{\dagger}	Mult. [‡]	Comments
7398.4	(5+)	6029.4	3+	1369	(Q)	
		5278.8	4+	2120	(D)	
7677.2	(6+)	5278.8	4+	2398	(Q)	
7974.4	(6+)	6543.9	4+	1432	(Q)	
		5278.8	4+	2695 ^e	(Q)	
8100.3	8+	6931.4	6+	1168.7 <i>3^b</i>	E2	DCO=0.95 14, 1.09 14, 1.07 18 (1976Na15).
8701	(6-)	5613.3	4-	3088 ^{<i>f</i>}		
		4491.2	5-	4209^{f}		
8935.8	(7+)	7398.4	(5+)	1538	(0)	
	. /	6931.4	6+	2004	(D)	
9033	(7-)	4491.2	5-	4542^{f}		
9305.2	(8+)	7677.2	(6+)	1628 ^e	(0)	
	(-)	6931.4	6+	2375 ^e	$(\widetilde{0})$	
9853.5	(8+)	7974.4	(6+)	1880	$(\widetilde{0})$	
	. /	7677.2	(6+)	2176 ^e	(0)	
		6931.4	6+	2921 ^e	(0)	
10474	(8-)	8701	(6-)	1773^{f}		
10895	(9-)	9033	(7-)	1862^{f}	(0)	DCO=1.2.4 (2004To07)
11003.0	(10+)	9305.2	(8+)	1698	(\mathbf{Q})	
1100010	(101)	8100.3	8+	2902	(\mathbf{Q})	
11685.8	(10+)	9305.2	(8+)	2381	$(\widetilde{0})$	
	()	8100.3	8+	3585	(0)	
11708.7	(9+)	8935.8	(7+)	2773	(0)	
12334.9	(10+)	9853.5	(8+)	2481^{e}	$(\widetilde{0})$	
		9305.2	(8+)	3030 ^e	$(\widetilde{0})$	
12591.9	(10+)	9305.2	(8+)	3287	$(\widetilde{0})$	
	. /	8100.3	8+	4491	(0)	
12923	(11-)	10895	(9-)	2028^{f}		DCO=0.4 3 (2004To07).
13115.1	12+	11685.8	(10+)	1429	(0)	
		11003.0	(10+)	2112	(0)	
13195	(10-)	10895	(9-)	2300^{f}		
13535.5	(11+)	11708.7	(9+)	1827	(0)	
14232.4	(12+)	11685.8	(10+)	2547 ^e	$(\widetilde{0})$	
		11003.0	(10+)	3229	(Q)	
15152.4	(13+)	13535.5	(11+)	1617	(Q)	
		13115.1	12 +	2037	(D)	
15267.1	(12+)	12334.9	(10+)	2932 ^e	(Q)	
15306	(13-)	12923	(11-)	2383 ^{<i>f</i>}		DCO=1.2 6 (2004To07).
15748.1	(12+)	12591.9	(10+)	3156	(Q)	
16529.4	(14+)	14232.4	(12+)	2297	(Q)	
		13115.1	12 +	3414	(Q)	
16579.7	(13+)	13535.5	(11+)	3044	(Q)	
17698.6	(14+)	14232.4	(12+)	3466	(Q)	
18054.6	(14+)	14232.4	(12+)	3822	(Q)	
18215	(15-)	15306	(13-)	2909 ^{<i>f</i>}		
18497.2	(14+)	15267.1	(12+)	3230	(Q)	
18719.2	(14+)	15267.1	(12+)	3452 ^e	(Q)	
19195.6	(15+)	15152.4	(13+)	4043	(Q)	
20578.6	(16+)	16529.4	(14+)	4049 ^e	(Q)	
22060.4	(16+)	18497.2	(14+)	3563	(Q)	

[†] From 2001Id01 in (²⁰Ne, $2\alpha\gamma$) reaction; unless otherwise stated.

[‡] The authors state that $\gamma(\theta)$ data are consistent with stretched quadrupole transitions (assumed as $\Delta J=2$, E2) for most γ rays, except for 2004, 2037 and 2120 which are assigned as $\Delta J=1$, dipole. Results of $\gamma(\theta)$ measurements are not quoted in 2001Id01. ^{*a*} From level-energy difference.

^b From 1975Si12. ^c From 1974Wa07.

^d From 1976Na15.

^{*e*} From 2003Ch22, value quoted by 2001Id01 is in agreement. ^{*f*} From 2004To07.

Adopted Levels

 $Q(\beta^{-})=-11.67 \times 10^{3}$ 16; S(n)=14427 24; S(p)=538 3; Q(α)=-5522 8 2003Au03

Q(\varepsilon p)=5994.8 28 (2003Au03).

Other reactions:.

 40 Ca(γ,π^-): 1985To14, 1982To10: E=400 MeV. Measured σ , deduced pion production. 1973Gr21: E=340 MeV. Measured σ .

⁴⁰Ca(π^+,π): 1987Bo43, 1986Ir02, 1986Er09, 1984Er03, 1984Bo51, 1983Ba13, 1982Ba50: E=120, 165, 230 MeV. Measured $\sigma(\theta)$.

 40 Ca(π +, π + π ⁻): 2001Ca53, 2000Bo38, 2000Gr28, 1999Bo25, 1997Bo15, 1996Bo09: E=283 MeV, measured pion invariant mass spectra.

⁴⁰Ca(⁶Li,⁶He): 1974Ga11: E=38 MeV. Upper limits on cross sections estimated for excitation energy up to 1700 as: <2.5 μ b for 10° <0.4 μ b for 30°. No peaks were observed in ⁶He spectra.

 40 Ca(⁶Li,⁶He): 1980GuZW: E=92 MeV. Measured σ , deduced T=1 magnetic giant resonance. Details of this study are not available.

Delayed 2-proton radioactivity of ⁴²Cr to levels in ⁴⁰Sc is possible but none has been detected by 2001Gi01. An unexplained proton group at 2490 *30* from ⁴²Cr decay could be an L=0 2-proton transition from IAS to first excited 0+ state in ⁴⁰Sc, but no γ rays were observed.

In (${}^{12}C, {}^{12}B$), 1988Vo06 identify population of 1+ states in 4.9-5.0 MeV region at low angles; a 6- state near 6 MeV at larger angles; and strong low-lying states of unnatural parity characterized by L=1, L=3 and L=5 transitions giving rise to 2-, 4- and 6- states, respectively. Population of a spin-flip dipole resonance (J π =0-,1-,2-) is suggested by strong enhancement of cross section in the 7-15 MeV range.

All levels populated in ⁴⁰Ti ε decay are proton unbound.

⁴⁰Sc Levels

Cross Reference (XREF) Flags

A	40 Ti ε decay (53.3 ms)
В	40 Ca(³ He,t)
С	$^{40}Ca(^{12}C,^{12}B)$

 $D = {}^{40}Ca(p,n),(pol p,n)$

E(level)	$\mathrm{J}^{\pi\dagger}$	T _{1/2}	XREF	Comments
0	4-	182.3 ms 7	BCD	$\% \varepsilon + \% \beta + = 100$.
				%εp=0.44 7.
				$\% \epsilon \alpha = 0.017 5.$
				J π : log ft=4.67 to 5-; log ft=4.80 to 3- (see ⁴⁰ Sc ε decay).
				$\% \epsilon \alpha$, $\% \epsilon p$: from 1982Ho09.
				$T_{1/2}$: weighted average of 179 ms 2 (1962Sc08), 186 ms 4 (1966An01),
				182.7 ms 8 (1968Ar03), and 183 ms 3 (1972Mo08).
34.3 15	(3-)		BCD	$J\pi$: $\sigma(\theta)$ in (³ He,t).
772.1 16	(2-)		BCD	$J\pi$: $\sigma(\theta)$ in (³ He,t).
893.5 20	(5-)		BCD	$J\pi$: $\sigma(\theta)$ in (³ He,t).
1670.7 <i>19</i>	(1-&2-)		В	J π : from $\sigma(\theta)$ for a possible triplet.
1703.2 22			В	
1797.0 24	(3-)		В	$J\pi$: from $\sigma(\theta)$.
1871 <i>3</i>			В	
1933 <i>3</i>			В	
2285 8	1 +		А	

E(level)	$\mathrm{J}^{\pi\dagger}$	T _{1/2}	XREF	Comments
2370 4	(4-)		ΒD	$J\pi$: $\sigma(\theta)$ in (p,n) for a complex structure and $\sigma(\theta)$ in (³ He,t). In higher-energy (³ He,t) experiments of 1984Ta11, a 1+ level at 2370 is proposed from $\sigma(\theta)$ data with the speculation that this state may be the analog of T-1 10310, 1+ state or T-1 0400, 0+ state in ⁴⁰ Ca
2754 8	1+		A D	Ref: D: $2700.$
2940 11	1+		А	
3030	(3-)		В	J π : from $\sigma(\theta)$.
3144 17	1+		AB	Ref: β: 3140.
3230 60	1+		А	
3337 17	1+		AB	Ref: β: 3360.
3418 60	1+		AB	Ref: β: 3450.
3494 8			AB	E(level): uncertain in ε decay.
				Ref: α: 3542.
3656 9	1 +		Α	
3790 9	1 +		Α	
3864 <i>41</i>			Α	
3.9×10^3 1	(1-,2-)		D	J π : from $\sigma(\theta)$ for a complex structure.
4070 22	1+		Α	
4132 20	1+		Α	
4271 9	1+		A D	E(level): complex structure in (p,n). Ref: D: 4300.
4368 8	0+		A	T=2.
				$J\pi$: log ft=3.26 from 0+; IAS of ⁴⁰ Ti g.s.
4526 12	1+		A	
4658 11	1+		A	
4830 19	1+		A	
4904 15	1		A	
5018 21	1+		A	
5086 28	1+		A	
5228 28	1.		A	
5362 00	1+		A	
5574 40	1+		A	
5702 25	1+		A	
0012 28	1+		A	
012/00	1+		A	
$0420\ 00$	1+		A	\mathbf{I} = from $\mathbf{r}(0)$ for a constant
$1.5 \times 10^{-5} 25$	(6-)		D	$J\pi$: from $\sigma(\theta)$ for a complex structure.
9×10^{3} 3	(0-,1-,2-)		D	$J\pi$: from $\sigma(\theta)$ for a complex structure.

⁴⁰Sc Levels (continued)

[†] 1+ assignments are from log ft < 5.2 from 0+.

⁴⁰Ti ε decay (53.3 ms) 1998Bh12,1998Li46,1990De43

Parent: ⁴⁰Ti: E=0; J π =0+; T_{1/2}=53.3 ms 15; Q=11.67×10³ 16; % ϵ =100

⁴⁰Ti decays to ³⁹Ca by εp (\approx 100%). 1998Bh12 (also 1998Le45,1997Tr11), 1998Li46 (also 2001Li56,1997Li25): measured E(p), I(p), pγ coin, T_{1/2}. 1998Bh12 measure $p\beta$ coin also. 1990De43: ⁴⁰Ti isotope identified and four proton groups. 2001Gi01 (also 2001Gi02): four most intense proton groups reported. Also measured $T_{1/2}$.

⁴⁰Sc Levels

E(level) [†]	$J^{\pi \ddagger}$	$E(p)(lab)^{\#}$	Comments
0	4-		$J\pi$: from Adopted Levels.
2285 8	1 +	1702 6 [@]	•
2754 8	1 +	2160 6 [@]	
2940 11	1 +	2341 10	
3144 17	1 +	2542 16	
3230 60	1 +	2609 <i>60</i> &	E(level): average from two proton groups at 2609 60 and 242 80
			S: E(p)=242 80 (in 1998Li46 only) to 2468.7 level in ³⁹ Ca.
3337 17	1 +	2728 16	
3418 60	1 +	400 <i>60</i> ^{&}	S: proton group to 2468.7 level in ³⁹ Ca.
3542 40		2928 40	S: average from 1998Bh12 and 1998Li46.
3656 9	1 +	3039 8	
3790 9	1 +	3179 8	S: $E(p)=747 \ 36 \text{ to } 2468.7 \text{ level in } {}^{39}Ca.$
3864 41		3242 <i>41^a</i>	
4070 22	1+	3443 21	
4132 20	1 +	3487 25	E(level): average from two proton groups.
			S: $E(p)=1111 \ 20$ to 2468.7 level in ³⁹ Ca.
4271 9	1 +	3639 8	
4368 8	0+	3733 7 [@]	T=2.
			S: $E(p)=1325$ 7 to 2468.7 level in ³⁹ Ca.
4526 12	1 +	3887 11	S: E(p)=951 86 (1998Li46 only) to 3026 level in ³⁹ Ca.
4658 11	1 +	4017 11	S: $E(p)=1608 \ 17 \text{ to } 2468.7 \text{ level in } {}^{39}Ca.$
4830 19	1+	4184 <i>18</i>	
4904 15		1849 <i>14^{ab}</i>	S: proton group to 2468.7 level in ³⁹ Ca.
5018 <i>21</i>	1 +	4371 23	E(level): average from two proton groups.
			S: $E(p)=1957 \ 21$ to 2468.7 level in ³⁹ Ca.
5086 28	1 +	4433 <i>31</i>	S: $E(p)=2027 \ 28 \text{ to } 2468.7 \text{ level in } {}^{39}Ca.$
5228 28		4572 28 ^a	
5362 60	1 +	4702 <i>60</i> ^{&}	
5574 40	1 +	4909 <i>40</i> &	
5702 23	1 +	5034 22	
6012 28	1 +	5336 28	
6127 60	1 +	5448 60 ^{&}	
6426 60	1 +	5740 <i>60</i> ^{&}	

[†] Deduced from proton energies. See details in ⁴⁰Ti ε p decay for ³⁹Ca.

[‡] For excited states, the assignments are from allowed β decays from 0+ as indicated by log ft values.

[#] From 1998Bh12, except where noted otherwise. Values from 1998Li46 are in general agreement but less precise due to poorer resolution than in 1998Bh12, although the source purity is claimed as better by 1998Li46.

[@] Weighted average from 1998Bh12, 1998Li46 and 2001Gi01.

[&] From 1998Li46 only.

^a From 1998Bh12 only.

 b This proton group is considered as suspect by the evaluators. With I(p)=1.4 in 1998Bh12, this group should have been seen by 1998Li46. In addition 1998Bh12 do not list, in their table III, a level at 4904 in ⁴⁰Sc corresponding to this proton group.

 ε, β^+ radiatons

Εε	E(level)	Iε	Log ft	$I(\varepsilon + \beta^+)$	Comments
(5.24E+3)	6426	0.00026 15	4.8 3	0.11 6 [‡]	av E β =1934 83.
					$\varepsilon K=0.0021$ 3.
					CL= 0.00022 3. cM_+= 3.7×10^{-5} 5
(5.54E+3)	6127	0.00035 20	4.8.3	0.18 <i>10</i> [‡]	$BB=2079\ 84$
(5.51215)	0127	0.00033 20	1.0 5	0.10 10	$\varepsilon K = 0.00175 22.$
					CL=0.000176 22.
(F. ((F. 2))	(010	0.00020.13	4 7 4 1 7	0.01.7	$\varepsilon M + = 3.0 \times 10^{-5} 4.$
(5.66E+3)	6012	0.00038 13	4./4 1/	0.21 /	av $E\beta = 2135 \ 80$. eK = 0.00163 19
					$CL=0.000163 \ I9.$
					ε M+=2.8×10 ⁻⁵ 4.
(5968)	5702	0.00036 14	4.81 18	0.24 9	av E β =2286 79.
					\mathcal{E} K=0.00134 <i>14</i> . CI =0.000135 <i>14</i>
					$e^{M+=2.30\times10^{-5}} 24$
(6.10E+3)	5574	0.00022 14	5.0 3	0.16 <i>10</i> ‡	av $E\beta = 2349 \ 8I$.
					εK=0.00124 13.
					CL=0.000125 13.
(6.21 - 2)	5262	0.0007.3	4 50 10	0.55.21	$\varepsilon M + = 2.13 \times 10^{-5} 22.$
(0.31E+3)	5362	0.0007 3	4.59 18	0.55 21*	av $Ep=2455$ 84. eK=0.00110.12
					CL=0.000111 12.
					$\varepsilon M + = 1.89 \times 10^{-5} 20.$
(6.44E+3)	5228	0.00013 13	5.3 5	0.11 11	av $E\beta = 2518 \ 80.$
					$\mathcal{E}\mathbf{K} = 0.00102 \ I0.$
					$\epsilon M + = 1.75 \times 10^{-5} I7$
(6.58E+3)	5086	0.0009 3	4.49 14	0.86 23	av $E\beta = 2588 \ 80.$
					εK=0.00095 9.
					$CL=9.5\times10^{-5}$ 9.
					εM +=1.62×10 ⁻³ 15.
					from $E(p)=2027$.
(6652)	5018	0.0014 3	4.31 11	1.4 3	av E β =2621 80.
					$\varepsilon K=0.00091$ 9.
					$CL=9.2\times10^{-5}$ 9.
					$EMI+=1.50 \times 10^{-5}$ 14. $I(e+B^+): 0.53$ 23 from $E(n)=4369$ and 0.86 26
					from $E(p)=1957$.
(6766)	4904	0.0013 3	4.35 11	1.4 3	av $E\beta = 2677$ 79.
					$\varepsilon K = 0.00086 8.$
					$CL=8./\times 10^{-5} 8.$
(6840)	4830		4.66 12	0.72 17	$BMT = 1.47 \times 10^{-13}$ av $B\beta = 2713 \ 80$.
(7012)	4658	0.0017 3	4.28 9	2.0 3	av E β =2798 79.
					εK=0.00076 7.
					$CL=7.6 \times 10^{-5}$ 7.
					$\mathcal{E}M += 1.30 \times 10^{-5} II.$ $I(c + B^+): 1.50, 22 \text{ from } E(c) = 4017 \text{ and } 0.28, 18$
					from $E(p)=1604$.
(7144)	4526	0.0021 4	4.21 9	2.6 4	av $E\beta = 2863$ 79.
					$\varepsilon K=0.00071 \ 6.$
					$CL=7.2 \times 10^{-5} 6.$
					$U_{1} = 1.22 \times 10^{-5} I_{0}$. $I(\varepsilon + \beta^{+}) \cdot 1.8.3$ from $F(n) = 3887$ and $0.8.3$ from
					E(p)=4540.
(7302)	4368	0.0191 16	3.26 6	$25.8 \ 8^{\dagger}$	av E β =2940 79.
					$\epsilon K = 0.00066.6.$

ε, β^+ radiatons (continued)					
Eε	E(level)	Iε	Log ft	$I(\varepsilon + \beta^+)$	Comments
					$CL=6.6\times10^{-5}$ 6.
					$\varepsilon M + = 1.13 \times 10^{-5} 9.$
					$I(\varepsilon + \beta^+)$: 21.8 5 from E(p)=3733 and 4.0 6
					from E(p)=1325.
(7399)	4271	0.00145 19	4.39 7	2.05 22	av $E\beta = 2988 79$.
					$\mathcal{E}K=0.00063 \ S.$
					$CL=6.3 \times 10^{-5} 5.$
(7529)	4122		4 92 11	0.96.10	$\epsilon M += 1.08 \times 10^{-9}$ 9.
(7538)	4132		4.82 11	0.80 19	av $Ep=5050$ 80. $I(c+B^+): 0.22, 14$ from $E(c)=2487$ and 0.52, 13
					from $F(p)=1116$
(7600)	4070		5.14 15	0.43 14	av $E\beta = 3087 \ 80.$
(7.81É+3)	3864		5.8 5	0.11 11	av E β =3188 82.
(7880)	3790	0.00147 17	4.44 7	2.58 23	av E β =3225 79.
					εK=0.00051 4.
					$CL=5.1\times10^{-5}$ 4.
					$\varepsilon M + = 8.7 \times 10^{-6}$ 7.
					$I(\varepsilon + \beta^+)$: 2.09 23 from E(p)=3169 and 0.49 17
(8014)	3656		1 66 7	1 73 20	from $E(p)=750$.
(8014) (8.13F+3)	3542		5.08.20	073	av $E\beta = 329179$. av $F\beta = 334782$
(8.15E+3)	3418		5.00 20	0.73^{\ddagger}	av $F\beta = 3408.85$
(8333)	3337		5.22.14	0.58 17	$av E\beta = 3448 \ 80$
(8.44E+3)	3230	0.0011.3	4.64 12	$2.4 6^{\ddagger}$	av $E\beta = 3501 \ 85$.
(0111210)					$\varepsilon K = 0.00040 \ 3.$
					$CL=4.1\times10^{-5}$ 3.
					$\varepsilon M + = 6.9 \times 10^{-6} 5.$
					$I(\varepsilon + \beta^+)$: 1.1 4 from E(p)=2609 and 1.3 4 from
					E(p)=242.
(8526)	3144		5.08 11	0.91 21	av $E\beta = 3544 \ 80.$
(8/30)	2940	0.0111.0	4.82 11	1.9 4 20 6 7 [†]	$av Ep=3644 \ 80.$
(8910)	2754	0.0111 8	3.07 3	29.0 /	$aV = D = 5/50 \ 80.$
					$CI = 3.37 \times 10^{-5} 22$
					$cL=5.57 \times 10^{-6} \Delta$
(9385)	2285	0.0075.5	3 89 5	23.6.6	FR = 3968 80
())))	2205	0.0075 5	5.075	23.00	$\epsilon K = 0.000283 \ 17.$
					$CL=2.84\times10^{-5}$ 17.
					ε M+=4.8×10 ⁻⁶ 3.

[†] Weighted average from 1998Bh12, 1998Li46 and 2001Gi01.
[‡] From 1998Li46 only.

40 Ca(p,n),(pol p,n) 1986Ch19

Includes (pol p,pol n).

1986Ch19, 1987Wa31, 1986Wa28, 1986ChZQ: (pol p,n) E=134 MeV. Measured $\sigma(\theta)$, analyzing power, polarization transfer coefficients. Deduced levels. FWHM=220-415 keV. Time-of-flight method. 2002Ha14: (pol p,n) E=197 MeV.

2002Wa06, 1999Wa08: (pol p,pol n): E=346 MeV. Measured σ and analyzing power.

1996Wa09, 1994Wa24: (pol p,pol n) E=135 MeV. Measured $\sigma(\theta)$, deduced isovector spin-dipole resonances.

1994Ta24, 1993Ch13: (pol p,pol n) E=494 MeV. Measured polarization transfer coefficients, deduced isovector spin response.

- 1994Sa36: (pol p,n) E=50, 80 MeV. Measured polarization transfer coefficients.
- 1987Ra23: (p,n) E=7-9 MeV. Measured thick target γ and neutron yields.

1984NaZX: (p,n) E=119.3 MeV. Measured σ , deduced strength for for 1+ states.

1983Ta16: (p,n) E=59.3, 118.3, 159.3 MeV. Measured $\sigma(\theta)$, deduced Gamow-Teller transition strengths.

1983An06: (p,n) E=133.5 MeV. Measured $\sigma(\theta)$, deduced levels.

1981Ga26: (p,n) E=200 MeV. Measured $\sigma(\theta)$, deduced resonances.

1980KnZX: (p,n) E=60, 135 MeV. Measured $\sigma(\theta)$.

1969Ov01, 1966Br17: (p,n) E=2-20 MeV. Measured σ , deduced Q value.

2001Ka19: (pol p,n): calculations and comparison with data.

⁴⁰Sc Levels

E(level) [†]	$J^{\pi\ddagger}$	L	Comments
0@	4-	_	
30 [@]	(3-)		
770 [@]	(2-)		Strongly populated state.
890 [@]	(5-)		
$2.3 \times 10^3 I^{\#}$	(4-)	3	
$2.7 \times 10^3 I$	1 +		
$3.9 \times 10^3 I^{\#}$	(1-,2-)		
$4.3 \times 10^3 I^{\#}$	1 +		
$7.5 \times 10^3 \ 25^{\#}$	(6-)		
$9 \times 10^3 \ 3^{\#}$	(0-, 1-, 2-)	1	

[†] From 1986Ch19, uncertainty is ≈ 100 keV.

[‡] From Adopted Levels.

Complex structure.

@ 0+30 and 770+890 form unresolved structures.

⁴⁰Ca(³He,t) 1971Sc02,1971Lo16,2000Ha06

1971Sc02: E=28 MeV. Measured $\sigma(\theta)$, FWHM=15 keV, deduced levels. 1971Lo16: E=30.2 MeV. Measured $\sigma(\theta)$, FWHM=20 keV for 0+34 and 70 keV for higher levels deduced levels, comparison with DWBA calculations. 2000Ha06: E=26.064, 26.076 MeV. Measured triton spectra at FWHM=15 keV. Deduced levels.

1991Gr03: E=75 MeV. Measured σ at 0°, deduced isovector giant resonances.

1991Br20 (also 1988Ro17):E=0.9-2 GeV. Measured $\sigma(\theta)$, deduced spin multipole Gamow-Teller transition strengths.

1984Va43: E=75, 81 MeV. Measured $\sigma(\theta)$, deduced transition strengths. 1984Ta11:E=197 MeV. Measured $\sigma T_{1/2}$ 15°, deduced levels, giant-dipole resonance, isovector GQR analog.

1982Ta05: E=130, 170 MeV. Measured $\sigma(\theta)$, deduced GQR and IAS of T=1 GDR.

1966Ma58: measured Q value.

40 Sc	Levels

E(level) [†]	J ^{π‡}	σ (relative) ^b	Comments
0^a	4-	1.5	
34.3 15 ^a	(3-)	1.6	
772.1 <i>16^a</i>	(2-)	2.0	
893.5 20 ^a	(5-)	5.2	
1670.7 <i>19</i> 1703.2 <i>22</i> [@]	(1-&2-)	1.2	E(level): possibly a triplet (1971Sc02).
1797.0 24 1871 3 [@] 1933 3 [@]	(3-)	1.0	
2370 4 ^a		6.1	E(level): a peak at 2370 is reported by 1982Ta05. Possible $J\pi$ =1+ from small L-transfer suggested by $\sigma(\theta)$ data of 1984Ta11 who speculate that this state may be the analog of T=1 <i>10310</i> , 1+ state or T=1 <i>9400</i> , 0+ state in ⁴⁰ Ca. $\sigma(\theta)$ data of 1971Lo16 suggests 4
3030 [#] 3140 [#]	(3-)		
3360 [#] 3450 ^{#&}		0.5	
3494 8 ^{&} 12.9×10 ³ 37			E(level): from 1971Sc02 only. E(level): gDR (1984Ta11,1982Ta05).

[†] Weighted averages of 1971Sc02 and 2000Ha06.

[‡] From comparison of $\sigma(\theta)$ patterns with DWBA calculations (1971Lo16). All assignments are the same in Adopted Levels.

From 1971Lo16 only.

[@] From 2000Ha06 only.

& 3450 in 1971Lo16 and 3494 in 1971Sc02 may correspond to the same level.

^a Reported in high-energy experiments of 1984Ta11, 1982Ta05 also.

^b At 40° (1971Sc02).

40 Ca(12 C, 12 B) 1988Vo06

1988Vo06: E=70 MeV/nucleon. Measured $\sigma(\theta)$. FWHM \approx 300 keV.

 $\frac{{}^{40}\text{Sc Levels}}{\text{MeV region at low angles; a 6- state near 6 MeV at larger angles;}}$ and strong low-lying states of unnatural parity characterized by L=1, L=3 and L=5 transitions giving rise to 2-, 4- and 6- states, respectively. Population of a spin-flip dipole resonance ($J\pi$ =0-,1-,2-) is suggested by strong enhancement of cross section in the 7-15 MeV range.

E(level)	$J^{\pi\dagger}$	L
0‡	4-	(3)
30 [‡]	(3-)	
740#	(2-)	(1)
890#	(5-)	

[†] As proposed by 1988Vo06, parentheses are added by the evaluators. All assignments are the same in Adopted Levels.

[‡] g.s. and 30 form a weak unresolved group. [#] 740 and 890 are unresolved and form a dominant structure in the spectrum.

Adopted Levels

S(n)=18420 SY; S(p)= 1.97×10^3 16; Q(α)=- 4.84×10^3 16 2003Au03

 $Q(\beta^{-})=-19180\ 530\ (syst,2003Au03),\ \Delta(S(n))=260\ (syst,2003Au03).$

Q(ep)=11140 160 (2003Au03).

Mass excess=-9060 *10* (1998Bh12, IMME (isobaric mass multiplet equations). This method not considered very certain by 2003Au03.

⁴⁰Ti produced in the following studies:.

1990De43: ⁵⁸Ni(⁵⁸Ni,X) E=65 MeV/nucleon. Magnetic analysis of fragments and time-of-flight method.

1998Bh12 (also 1998Le45,1997Tr11): Ni(⁵⁰Cr,X) E=82.6 MeV/nucleon. Fragments were separated by LISE3 spectrometer.

1998Li46 (also 2001Li56,1997Li25): ⁹Be(⁵⁸Ni,X) E=500 MeV/nucleon followed by isotopic separation by projectile fragment recoil separator.

⁴⁰Ti Levels

Cross Reference (XREF) Flags

A 40 Ca (π^+,π^-)

E(level)	J^{π}	T _{1/2}	XREF	Comments
0	0+	53.3 ms 15	A	% ε+% β+=100. % εp=100 1998Bh12,1998Li46. $% β^+$ delayed $γ$ activity <3% from integrated $β$ strength of 99.0% <i>16</i> (1998Bh12) and 101% 5 (1998Li46). Integrated $β$ strength in ⁴⁰ Ti $ε$ decay is 103.4 22 (evaluator). No $β^+$ delayed $γ$ activity was seen by 1998Li46. T _{1/2} : weighted average of 53.5 ms 25 (2001Gi01,2001Gi02), 52.7 ms <i>15</i> (1998Bh12,1998Le45, 51.7 ms 6 in 1997Tr11), 54 ms 2 (1998Li46, 55 ms 2 in 1997Li25), and 56 ms + <i>18-12</i> (1990De43).

⁴⁰Ca(π^+,π^-) 1997Fo09,1995Si01,1990Mo02

In most of the following studies, $\sigma(\theta)$ were measured for the excitations of nonanalog g.s. in ⁴⁰Ti deduced in a double charge-exchange reaction.

1997Fo09: E=45-90 MeV, measured $\sigma(\theta)$, deduced g.s. transitions resonance structure.

1995Si01: E=32-79.26 MeV, measured $\sigma(\theta)$, deduced core polarization.

1991Wa04, 1982Mo12: E=164 MeV. Measured $\sigma(\theta)$.

1991Mo05, 1990Mo02: E=295 MeV, measured $\sigma(\theta)$, deduced double- isovector GDR.

1989Gr06: E=180, 240 MeV. Measured total σ .

1985Mo18, 1983Bl08: E=120-210 MeV, measured $\sigma(\theta)$.

1979Da16: E=290 MeV. Measured σ .

⁴⁰Ti Levels

E(level) J^{π} Comments

0+ $d\sigma/d\Omega = 0.60 \ \mu \text{b/sr}$ 16 at E(π +)=64.19 MeV and 30° (1995Si01).